
Perceptual Scheduling in Real-time Music and Audio Applications

by

Amar Singh Chaudhary

B.S. (Yale University) 1995
M.S. (University of California at Berkeley) 1998

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Lawrence A. Rowe, Co-Chair
Professor David Wessel, Co-Chair
Professor John Wawrzynek
Professor Ervin Hafter

May 2001

Perceptual Scheduling in Real-time Music and Audio Applications

Copyright May 2001

by

Amar Singh Chaudhary

1

Abstract

Perceptual Scheduling in Real-time Music and Audio Applications

by

Amar Singh Chaudhary

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Lawrence A. Rowe, Co-Chair

Professor David Wessel, Co-Chair

Academic research of computer music and commercial sound systems is moving

from special-purpose hardware towards software implementations on general-purpose com-

puters. The enormous gains in general-purpose processor performance gives musicians and

composers richer and more complex control of sound in their performances and composi-

tions. Just as geometric modeling has given graphic designers more control of their scenes

and objects, (e.g., independent control of size, position and texture), sound synthesis al-

lows musicians more control of musical parameters such as duration, frequency and timbre.

Examples of sound-synthesis algorithms include additive synthesis, resonance modeling,

frequency-modulation synthesis and physical models. Applications, called synthesis servers,

allow musicians to dynamically specify models for these algorithms and synthesize sound

from them in real time in response to user input. A synthesis server is an expressive,

software-only musical instrument.

However, the widespread use of synthesis servers has been frustrated by high com-

putational requirements. This problem is particularly true of the sinusoidal and resonance

models described in this dissertation. Typical sinusoidal and resonance models contain hun-

2

dreds of elements, called partials, that together represent an approximation of the original

sound. Even though computers are now running above the 1GHz clock rate, it is still not

possible to use many large models in polyphonic or multi-channel settings. For example, a

typical composition might include eight models with 120 partials each, or 960 partials total.

Additionally, current operating systems do not guarantee quality of service (QoS) necessary

for interactive real-time musical performance, particularly when the system is running at or

near full computational capacity. Traditional approaches that pre-compute audio samples

or perform optimal scheduling off-line do not lend themselves to musical applications that

are built dynamically and must be responsive to variations in live musical performance.

We introduce a novel approach to reducing the computational requirements in real-

time music applications, called perceptual scheduling, in which QoS guarantees are main-

tained using voluntary reduction of computation based on measures of perceptual salience.

When a potential QoS failure is detected, the perceptual scheduler requests that the synthe-

sis algorithms reduce computational requirements. Each algorithm reduces its computation

using specific psychoacoustic metrics that preserve audio quality while reducing computa-

tional complexity.

This dissertation describes the perceptual scheduling framework and its application

to musical works using additive synthesis and resonance modeling. Reduction strategies are

developed based on the results of listening experiments. The reduction strategies and the

perceptual scheduling framework are implemented in “Open Sound World,” a prototype

programming system for synthesis servers. This implementation is then tested on several

short musical examples. The computation saved is measured for each example. The quality

of the audio output from the servers with and without perceptual scheduling enabled is

evaluated by human listeners in a controlled experiment. The results of this experiment

have been encouraging. In one example, the average CPU time decreased by about 75%,

yet listeners perceived little degradation in audio quality.

The perceptual scheduling framework can be applied to other compute-intensive

3

algorithms in computer music, such as granular synthesis, pitch detection and sound spa-

tialization. It can also be applied to other perceptually oriented computational tasks, such

as real-time graphics and video processing.

Professor Lawrence A. Rowe
Dissertation Committee Co-Chair

Professor David Wessel
Dissertation Committee Co-Chair

i

“If I were not a physicist, I would probably be a musician. I often think in music.
I live my dreams in music. I see my life in terms of music... I get most joy in
life out of music.”
– Albert Einstein

“I am putting myself to the fullest possible use, which is all, I think, that any
conscious entity can ever hope to do.”
– HAL9000, 2001: A Space Odyssey

ii

Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 History and Related Work . 5

1.1.1 Languages for Musical Sound . 5
1.1.2 Reactive Real-time Systems . 7
1.1.3 QoS Scheduling . 8
1.1.4 Models of Time . 8
1.1.5 Data and Computation Reduction in Audio Systems 10
1.1.6 Audio Perception . 11

1.2 Road Map . 12

2 Sound Synthesis 14
2.1 Synthesis Overview and Techniques . 14

2.1.1 Additive Synthesis . 16
2.1.2 Resonance Modeling . 19
2.1.3 Other Synthesis Techniques . 21

2.2 Synthesis Servers . 23
2.2.1 Softcast . 24
2.2.2 SDIF additive synthesizer in SAOL 26
2.2.3 Additive Synthesis Server in Open Sound World 28

2.3 Sound synthesis used in this research . 30

3 Synthesis Computation 32
3.1 Synthesis Algorithms . 32

3.1.1 Additive Synthesis using Oscillators 32
3.1.2 Transform-domain Additive Synthesis (TDAS) 34
3.1.3 Resonance Modeling . 38

3.2 Execution and Scheduling Issues . 41
3.2.1 The Scheduler . 42
3.2.2 Reactive Real-time Constraints . 44

iii

3.2.3 Potential QoS Failures . 46

4 Computation Reduction Strategies 48
4.1 Measuring effects of reductions . 50

4.1.1 Sinusoidal models . 52
4.1.2 Resonance models . 52

4.2 Results . 53
4.2.1 Sinusoidal Models . 54
4.2.2 Resonance Models . 58

4.3 Developing a Reduction Algorithm . 63

5 Perceptual Scheduling 67
5.1 Preventing QoS failures . 67
5.2 Generic Perceptual Scheduling Problem . 69

5.2.1 Choosing the epoch length . 72
5.3 Additive Synthesis . 73

5.3.1 Implementation . 74
5.3.2 Performance . 74
5.3.3 Customized Reduction Strategies . 79

5.4 Resonance Modeling . 80
5.4.1 Implementation . 81
5.4.2 Performance . 82

5.5 Discussion . 83

6 Evaluation of Perceptually Scheduled Music 85
6.1 Experimental Methods . 86
6.2 Example 1: Fugue in B[minor, J. S. Bach (BWV 867) 88
6.3 Example 2: Time-scale Improvisation on Recording of Tibetan Singing . . . 93
6.4 Example 3: Antony, David Wessel . 97
6.5 Example 4: Excerpts from Constellation, Ronald Bruce Smith 106

6.5.1 Chords on a modified marimba model 107
6.5.2 Glockenspiel and vibraphone models 111

6.6 Discussion . 113

7 Conclusions and Future Work 115
7.1 Review of Motivations and Design . 115
7.2 Research Contributions . 116
7.3 Future Research Directions . 119
7.4 Summary . 120

Bibliography 122

A Supplementary Audio CD 137

iv

List of Figures

1.1 The dodecaphone . 3

2.1 A sinusoidal track model . 17
2.2 A synthesis server . 24
2.3 softcast . 25
2.4 An additive synthesizer in SAOL . 27
2.5 An OSW synthesis server . 29

3.1 A test patch for AddSynth . 34
3.2 Performance results for the AddSynth test patch 35
3.3 A test patch for AddByIFFT . 36
3.4 Performance results for the AddByIFFT test patch. 37
3.5 A test patch for Resonators . 39
3.6 Performance results for the Resonators test patch. 40
3.7 Simple OSW patch examples . 43
3.8 Scheduling hypothetical patches. 44
3.9 Managing real-time constraints . 46

4.1 SMR calculation . 49
4.2 Results for the suling model . 55
4.3 Results for the berimbao model . 56
4.4 Results for the James Brown excerpt . 57
4.5 Results for the marimba model . 60
4.6 Results for the bass model . 61
4.7 Results for the tam-tam model . 62

5.1 Perceptual scheduling feedback loop . 68
5.2 Synthesis servers with reducible transforms 75
5.3 Suling model performance measurements (oscillators) 76
5.4 Suling model performance measurements (TDAS) 77
5.5 Sinusoidal model comparisons . 78
5.6 Comparison of generic and customized reduction strategies 79
5.7 A reducible resonance-model server . 81

v

5.8 Tam-tam model performance measurements 83
5.9 Resonance model comparisons . 84

6.1 Fugue 22 . 89
6.2 CPU usage in Fugue 22 . 90
6.3 Quality vs. CPU usage in Fugue 22 . 92
6.4 OSW patch for Tibetan-recording improvisation 94
6.5 CPU usage in Tibetan-recording improvisation 95
6.6 Quality vs. CPU usage in Tibetan-recording improvisation 96
6.7 OSW patch for Antony . 99
6.8 CPU usage in Antony with generic reduction strategy 100
6.9 Reducible OSW patch for Antony . 102
6.10 CPU usage in Antony with custom reduction strategy 103
6.11 Quality vs. CPU usage in Antony . 104
6.12 Chords from Constellation used to play marimba models. 106
6.13 Resonance model subpatch . 108
6.14 CPU usage for marimba-model chords in Constellation 109
6.15 Quality vs. CPU usage for marimba models in Constellation 110
6.16 CPU usage for glockenspiel and vibraphone models 112
6.17 Quality vs. CPU usage for glockenspiel and vibraphone models 113

vi

List of Tables

3.1 Specification of the Sinewave transform . 42

4.1 Scoring system for listening experiments. 51
4.2 Sinusoidal-model listening examples. 52
4.3 Resonance-model listening examples. 53

6.1 Summary of musical examples . 86
6.2 Scoring system for listening experiments . 87

vii

Acknowledgements

I would first like to acknowledge my dissertation committee. My co-chairs, Larry

Rowe and David Wessel have enthusiastically supported not only the work in this disserta-

tion, but all my research in computers and music as a graduate student. An exchange of

e-mail between them five-and-a-half years ago got me started working at the Center for New

Music and Audio Technologies (CNMAT), and the rest, as they say, is history. I would also

like to thank John Wawrzynek and Ervin Hafter for serving on my committee and offering

their advice and support.

This research was supported in large part by the National Science Foundation

Graduate Fellowship Program and Gibson Music, Inc. Additional resources were provided

by Silicon Graphics, Inc. and the Edmond O’Neill Memorial fund.

Of course, funding alone cannot bring research projects to fruition. In particular,

I must acknowledge the contributions of my colleagues at CNMAT, Adrian Freed, Matthew

Wright and Richard Andrews, with whom it has been a great pleasure to work over the

past five years. Fellow researchers Timothy Madden, Rimas Avizienis and Sami Khoury

also contributed to portions of my major research projects at CNMAT, including Open

Sound Edit and Open Sound World. I promise I will finally release OSW one of these days!

I would also like to acknowledge several colleagues in the wider academic commu-

nity. Lippold Haken, from the University of Illinois, and Kelly Fitz, from the University of

Washington, helped evaluate the audio examples in my final listening experiment. Their

time and advice is greatly appreciated. I would also like to thank Gregory H. Wakefield for

his advice, as well as Roger Dannenberg and Miller Puckette for their advice and critiques

of early versions of Open Sound World.

Finally, there is the less quantifiable but no less valuable support from family and

friends. My parents, Jewel and Banvir, and my brothers, Arun and Ajay, have supported

all my academic and musical endeavors for a very long time. Space prevents me from listing

all of the people who have contributed to my life in graduate school, but I would like to

viii

acknowledge a few people in particular. David Blackston has provided many years of good

friendship and conversation and has always been available to “go out for a beer.” Silvia

Yee has kept me in touch with my musical side and also well fed with homemade baked

goods. And of course there is Leah Fritz, whom I met when I began this dissertation and

has made my life immeasurably happier in the time since.

1

Chapter 1

Introduction

Academic research of computer music and commercial sound systems is moving

from special-purpose hardware towards software implementations on general-purpose com-

puters. The enormous gains in general-purpose processor performance gives musicians and

composers richer and more complex control of sound in their performances and composi-

tions. Just as geometric modeling has given graphic designers more control of their scenes

and objects, such as independent control of size, position and texture, sound synthesis allows

musicians more control over parameters such as duration, frequency and timbre. Examples

of sound-synthesis algorithms include sampling, additive synthesis, frequency-modulation

(FM) synthesis, resonance modeling, granular synthesis and physical modeling. Similar ad-

vances in pitch-detection and sound-spatialization algorithms provide richer environments

for control and realization of synthesized sound. Applications, called synthesis servers, al-

low musicians to dynamically specify models for these algorithms and synthesize sound from

them in real time in response to user input. In the hands of experienced users, synthesis

servers are expressive, software-only musical instruments.

However, the widespread use of synthesis servers has been frustrated by high com-

putational requirements. This problem is particularly true of the sinusoidal and resonance

models described in this dissertation. Typical sinusoidal and resonance models contain

2

hundreds of elements, called partials that together represent an approximation of the orig-

inal sound. While current computers are fast enough to synthesize individual models of

this size in real time, it is still not possible to use many large models in polyphonic or

multi-channel settings. Readily available technologies such as Dolby AC-3 audio [123] and

open facilities such as the Sound Spatialization Theater at the Center for New Music and

Audio Technologies at the University of California at Berkeley (CNMAT) [65] allow musi-

cians the opportunity to create more acoustically live and immersive experiences for their

audiences. However, the resources required to synthesize a model on one channel of audio

must be duplicated for the other channels. For example, synthesis of resonance models with

120 partials each in an eight-channel audio system requires a total of 960 partials to be

synthesized, which saturates a 700MHz Pentium III running the Open Sound World [23]

real-time music package under Linux. There is no room left to transform the musician’s

input gestures into control of the models, or for more sophisticated multi-channel diffusion.

An accurate model of an organ pipe may only require twenty to thirty partials, but typical

organs have thousands of pipes requiring separate models. Polyphonic synthesis of dozens

or even hundreds of models may be required simultaneously. Additionally, in a sound sys-

tem with fewer audio channels than pipes the synthesis of different pipe models must be

dynamically routed to one or more channels to simulate the spatial acoustics of the organ.

Even for monophonic instruments, multi-channel audio can enhance the acoustic richness

of a model. For example, the diffusion of sound from a saxophone can be simulated using

a speaker system such as CNMAT’s dodecaphone illustrated in figure 1.1. Because the

loudness and timbre of an instrument is different when heard from different angles [18],

audio output for each speaker should be synthesized from a different model. A sinusoidal

model of a saxophone that contained 80 partials now requires 960 partials to be synthesized.

Advanced spatial effects, such as the individual diffusion of ten thousand sinusoidal oscil-

lators to different perceived spatial locations, remain beyond the real-time computational

resources of even current 1GHz processors [101]. The shift in professional audio systems

3

Figure 1.1: The dodecaphone speaker system. A separate speaker is mounted on each face
of the decahedron. Audio synthesized from twelve different sound models can be routed to
each speaker to enhance the spatial presence and realism of modeled instruments.

from CD-quality audio at a 44.1kHz sampling rate with 16-bit resolution to 96kHz sampling

rates with 20 to 24-bit resolutions places further strain on computational resources. Not

only must a system compute twice as many samples in the same amount of time, but it

may also require double-precision floating-point to handle the greater dynamic range and

rounding errors on calculations involving sampling rates [5].

Polyphonic synthesis also requires multichannel user input. Little computation is

required if the input is from a MIDI keyboard, but if the synthesis is controlled by live

musical instruments, pitch detection is required. Polyphonic pitch detection for the six

strings of a guitar saturates the computational bandwidth of a 400MHz Apple G3 using the

fiddle algorithm [94] in the Max/MSP programming environment, leaving no resources for

the synthesis being controlled.

Even when there are enough computing resources available to realize an ambitious

project, current systems do not guarantee hard real-time performance. Hardware interrupts,

network services and other applications compete with real-time music processes, leading to

unpredictable increases or decreases in available CPU time. Mathematical exceptions and

4

memory faults also add unpredictability. If the CPU cannot compute sound samples in real

time due to excessive computational requirements or exceptional situations, audio buffers

will underflow and gaps or loud “clicks” will be heard in the sound output. While these

exceptions may not have the catastrophic effects found in other applications requiring real-

time performance guarantees (e.g., rocket launches [3]), they are still unacceptable for live

musical performances. Such clicks severely degrade the quality of the experience for per-

former and musician alike, and increased latency and jitter from unpredictable performance

affect the ability of a musician to perform gestures in conjunction with what he or she is

hearing.

Traditional methods that pre-compute samples or require off-line analysis to deter-

mine optimal scheduling are not applicable because musicians often vary their live perfor-

mances, not only changing tempi but inserting or removing phrases. Additionally, musicians

who use programming environments such as Max/MSP and Open Sound World develop real-

time music applications incrementally. Programs are debugged and modified as they are

running without intervening compilation and optimization steps, thus preserving run-time

state (e.g., pitches and loudness) between incremental modifications. When optimization is

required, it is usually done by hand [75].

We introduce a novel approach to reducing the computational requirements in

real-time music applications called perceptual scheduling. In perceptual scheduling, quality-

of-service (QoS) guarantees, or guarantees of perceived performance by end users, are main-

tained in a dynamic system using voluntary reduction of computation based on measures

of perceptual salience. When a potential QoS failure is detected, the perceptual sched-

uler requests running synthesis algorithms to reduce the computational requirements. Each

algorithm reduces its computation using specific psychoacoustic metrics that preserve audio

quality while reducing computational complexity.

This dissertation describes the perceptual scheduling framework and its application

to musical works using additive synthesis and resonance modeling. Reductions in compu-

5

tation from perceptually scheduled musical examples are measured and the quality of the

audio output is evaluated in controlled listening experiments. Additive synthesis and reso-

nance models are used in this research because they can be decomposed into partials that

can be easily mapped to both computational bandwidth and audio quality. Additionally,

the psychoacoustic contributions of individual partials in these models is well understood.

However, the perceptual scheduling framework can be applied to other compute-intensive

algorithms in computer music, such as granular synthesis, pitch detection and sound spatiali-

zation. It can also be applied to other perceptually oriented computational tasks, such as

real-time graphics and video processing [80].

An analogy can be made between perceptual scheduling and other adaptive sys-

tems, such as hybrid cars, in which perceived quality (i.e., velocity) is maximized under

limited bandwidth (i.e., the limited horsepower of the smaller engine) by dynamic reduc-

tions and adaptations to changing performance requirements (i.e., the system dynamically

switches the gas engine off at low velocities and switches both the engine and electric motor

on during acceleration) [6].

1.1 History and Related Work

This dissertation covers a broad range of fields. The following subsections describe

related work in computer-music languages, reactive real-time systems, QoS scheduling, data-

and computation-reduction algorithms for audio, and human perception of audio. Related

work on sound synthesis is described in detail in chapter 2.

1.1.1 Languages for Musical Sound

One fundamental application in computer music is sound synthesis, or the genera-

tion of sound from a program written in a sound synthesis language. Most sound synthesis

languages trace their history to the “Music N” languages. In “Music N” languages, prim-

itives called unit generators representing oscillators, envelopes, and effects are connected

6

to form instruments, programs that generate sound in response to control parameters. An

instrument is applied to a time-ordered sequence of control parameters, called a score, to

realize a composition. Another important feature of “Music N” languages was the intro-

duction of rates as a language feature. Sample-rate computations occur once for each audio

sample being generated, while control-rate computations occur at a slower rate that allows

user input to modify the sound. Examples of “Music N” languages include Music V [77],

cmix [66] and Csound [122]. Languages such as Music IV and cmix perform independent

sample-rate computations for each sample, which allows the sample rate and control rate to

be set independently. On the other hand, vectorized languages such as Csound and Music V

perform sample-rate operations on vectors of samples and implicitly set the control rate to

be the sample rate divided by the vector size. The unit-generator paradigm and rate-based

computing have been used in other sound synthesis languages, including the functional

language Nyquist [34], the object-oriented language SuperCollider [79], and the MPEG-4

Structured Audio Orchestra Language (SAOL) [109].

With the development of hardware synthesizers supporting MIDI [4], several computer-

music languages were developed to process control parameters in real time. Examples of

real-time music-event-processing languages include MOXIE [28], MIDI-Lisp [130], Sonnet

[60] and Max [92]. Systems such as Max and Sonnet use a visual programming paradigm

in which components represented by graphic shapes (e.g., boxes and diamonds) are wired

together to form larger structures specifying event flow. A program is represented by a

directed graph of these components. Such visual environments can also be used to spec-

ify signal flow, as in Ptolemy [70], which is described below. They can also be used by

synthesizers with programmable DSPs, such as Kyma [107] in designing and controlling

custom sound synthesis. SynthBuilder [89] allowed users to specify instruments visually

for mixed hardware and software DSP solutions. However, current desktop and portable

computer systems are now fast enough to allow both the sound synthesis and event pro-

cessing to be computed in real time using only software. This capability has lead to the

7

development of several real-time software synthesis systems. Max/MSP [136] is a signal

processing extension to Max. The languages Pd [93] and jMax [36] are also descended from

Max. SuperCollider, “Real-time Csound” [121] and RTcmix [118] allow unit generators to

be controlled by external user input in real time. Toolkits such as HTM [43] and STK

[29] allow development of custom, high-performance sound synthesis applications in C and

C++, respectively, while systems such as Aura [33] define entirely new languages on top of

high-performance computation environments.

Open Sound World (OSW) builds on the ideas of these previous languages [23].

It is designed to meet the needs of professional musicians working in live performance or

recording situations as well as researchers exploring real-time systems, signal processing,

or psychoacoustics. OSW was proposed and developed in response to the experiences of

composers and researchers at the Center for New Music and Audio Technologies (CNMAT)

at the University of California Berkeley using the Max/MSP environment and the CNMAT

Additive Synthesis Tools project [49], which included real-time additive synthesis based on

HTM. The OSW project has grown to embrace broader research goals in language and

system design.

1.1.2 Reactive Real-time Systems

Research in reactive real-time music synthesis systems draws upon research in spec-

ifying and scheduling dataflow networks [71], including ongoing work in the Ptolemy project

for specifying different formal models (e.g., synchronous dataflow and process networks).

Open Sound World follows the “discrete-event” model in Ptolemy, in which execution flows

from one component to another via asynchronous messages. The specification and execu-

tion of components in OSW, including the semantics of “activation expressions,” is also

influenced by work from the reactive programming community, including Reactive C and

SugarCubes [115]. In reactive programming, execution is triggered by changes in state,

which may then side-effect variables that trigger other executions. Although unusual for a

8

signal-processing system, this execution model gives OSW programmers a unified view of

both continuous audio and discrete events, and allows the use of clocks and audio streams

that run at different sample rates. Recent work using audio signals with lower sample

rates as control streams suggests that applications can benefit from this unified view [11].

A similar execution model can be found in the computer-music language MOXIE [28], which

evaluates procedures in response to events and includes a construct cause to evaluate an

expression at an arbitrary time in the future.

1.1.3 QoS Scheduling

Previous work in real-time QoS scheduling has largely concentrated on network

services [52], but these ideas have been extended to multimedia systems as well [40][17]. In

computer-music applications, the service is more homogeneous than the general multimedia

and networking cases, but processes and bandwidth requirements can change dynamically

and unpredictably, and losses (i.e., glitches in the perceived audio) cannot be tolerated.

Rather than schedule unpredictable processes to guarantee QoS, we use a simpler scheduling

algorithm and dynamically trade quality for lower computational bandwidth.

The perceptual scheduling framework presented in this dissertation is similar to

the adaptive QoS framework described by Li and Nahrstedt [72]. Both systems adapt

to QoS variations that arise in heterogeneous computing environments and allow different

performance criteria to be specified for different components or applications. In perceptual

scheduling, the “system-wide” property is the bounded latency of the audio output and the

application-specific properties are the perceptual constraints on how computation can be

reduced within each component of the system without compromising audio quality.

1.1.4 Models of Time

Real-time computer-music applications require a model of time that is both flexible

and accurate. Flexible timing of events and signals is achieved through the use of a virtual

9

time system, in which time from a clock source is dynamically scaled (i.e., sped up or

slowed down), or offset by positive or negative value (i.e., to jump forward or backward).

Virtual time is a generalization of a time map, or a continuous monotonic function over

the duration of a piece of music that maps from one time scale to another time scale

[59]. Dannenberg describes the use of time maps for specifying and managing expressive

tempo changes in computer accompaniment [32]. Rowe and Smith use a true virtual time

system (i.e., the scaling function need not be continuous or monotonic) to synchronize

frames of video, audio, still images or other data in media streams [106]. Control of time,

such as fast-forward, rewind and pause operations, are expressed as functions of virtual

time. For example, fast forward scales the virtual time stream by a factor 2.5, while pause

sets the rate to zero so that virtual time does not advance and the player remains on

the current frame. The stream can be advanced one frame by offsetting virtual time by

one frame period while the rate is zero. Similar virtual time abstractions have been used

for expressive control of sound synthesis models in the softcast additive synthesizer [48]

and Max/MSP programming environment [134]. The virtual time abstraction is built into

Open Sound World via components called “time machines” that allow users to construct

arbitrarily complex time-manipulation functions. The same virtual time system is used for

both events and continuous media.

Virtual time systems require an accurate model of physical time. Accurate time-

stamping of discrete musical events is described by Anderson and Kuivila [10]. In their

approach, all events must be scheduled to occur at a fixed time in the future. Deadline

scheduling is used to execute the events in a temporally accurate sequence, and buffer delay

is limited in order to bound latency and minimize jitter in the event stream. This forward-

synchronous model has been extended to distributed systems by Brandt and Dannenberg

[15]. In their system, each node in the system maintains its own clock as a linear func-

tion of audio samples it has processed. One node is designated as the master, and global

time is set as the number of samples processed by the master times its physical sample

10

period. The slave nodes use an adjustable virtual sample period to map their individual

sample counts to global time. The virtual sample periods are dynamically adjusted using

a predictor-controller mechanism to maintain a bounded error between global time on the

master and global time on the slaves. The OpenSound Control (OSC) protocol allows op-

tional forward synchronization of events via its timestamping mechanism [131]. However

it relies on access to a separate mechanism for clock synchronization, such as Brandt and

Dannenberg’s system, an AES/EBU master word clock [7], or a network time server using

NTP [82] or SNTP [83] protocols.

1.1.5 Data and Computation Reduction in Audio Systems

This research complements the work done in “perceptually lossless” compression

[61], particularly the use of masking effects to reduce data bandwidth [138]. The MPEG-1

[111] standard and the MiniDisc [119] use algorithms based on auditory masking to compress

time-domain waveform representations. In particular, the algorithm used for the MiniDisc

converts a time-domain representation to frequency-domain representations using a modified

discrete cosine transform (MDCT) [91] and then quantizes the result based on dynamic

sensitivity to frequency ranges and masking characteristics. Masking is also used to hide the

quantization artifacts by ensuring that these artifacts are placed temporally and spectrally

near sounds that will mask them.

Auditory masking and other measures of perceptual salience have also been used

to save computational bandwidth in additive synthesis. Additive synthesis models are com-

posed of partials representing sinusoidal components whose sum approximates the waveform

representation. These models and algorithms to synthesize waveform representations from

them are described in greater detail in chapters 2 and 3, respectively. Marks describes a

system that pre-assigns a static weight to each partial and prunes partials by increasing

weight if there are not enough computational resources to synthesize the entire model [76].

By contrast, Haken uses a method based on auditory masking to dynamically prune par-

11

tials from a model during synthesis [53]. This system is constantly making decisions about

which partials to prune and which to retain, even in the middle of a note event. We opt

for Haken’s dynamic approach and build on his work by evaluating efficient methods for

pruning partials in real time within a dynamic framework. Model sizes increase or decrease

in response to changes in available computational bandwidth. When a potential QoS failure

is detected, the pruning methods are switched on to reduce model size and computation.

When such a failure becomes unlikely, the pruning is relaxed. In our system, both the

pruning decisions and the computation of perceptual salience are dynamic. Dynamic com-

putation of perceptual salience allows the system to better adapt to timbral changes in the

model. Such adaptation is necessary if the performer is allowed to modify or switch timbres

in real time.

Such a dynamic system is possible because pruning of partials affords graceful

degradation in quality as a function of the number of partials pruned. Graceful degradation

has been a goal of systems for bandwidth management in distributed multimedia as well.

A more common strategy for graceful degradation in these applications is multiple descrip-

tion (MD) source coding [95]. In MD source coding, multiple representations of a stream

are transmitted, each describing the stream at a reduced quality. Each representation can

be received independently to recover the reduced-quality version of the stream. If multiple

representations are received, a higher-quality version can be synthesized from them. Thus,

the quality of a received stream degrades gracefully if a small number of representations are

lost at any given time.

1.1.6 Audio Perception

An important component of this research is measuring the quality of sounds syn-

thesized under reduced computational bandwidth. Wakefield surveys several techniques for

measuring the ability of listeners to discriminate between sampled waveform representations

from original recordings and synthesized versions [125]. Discrimination techniques measure

12

the probability of listeners’ correctly discriminating between original and synthesized ver-

sions of a sound sample. If the probability falls below a specified threshold, the samples are

considered “indiscriminable.” Other experiments ask listeners to rank sound samples along

a unidimensional scale, such as quality. Methods that use pair-wise comparisons among

all the sound samples require listeners to only determine which sample is “larger” in the

measured dimension. For example, if quality is being measured, listeners decide which of

the two samples “sounds better.” This method, however, requires O(N2) listener responses

to reconstruct the relative positions of the sound samples along the dimension. An early

pilot test of the listening experiments described in this dissertation used this approach, but

found that too many judgements were required of listeners and that most of the samples

were too close in quality for listeners to discriminate.

An alternative approach allows listeners to assign scores to each sample on a scale

with five or more points. Samples can be presented alone or with a reference sound as a

comparison. Such a scoring system is used to measure speech quality in communication

systems [96]. A similar approach was used in our experiments. Listeners were presented

two samples: a reference sample always identified as the “original” and a second sample to

be judged. A five-point scale was chosen for compatibility with the mean opinion scores

used in evaluation of telecommunications systems [2]. An equivalent scoring system is also

described by Moore to measure the effect of data reductions in additive synthesis [84].

1.2 Road Map

This chapter introduced the problems addressed by this dissertation and briefly

described related work in other fields. Chapter 2 provides an overview of sound synthesis,

focusing on the additive-synthesis and resonance-modeling techniques used in this research.

Chapter 2 also presents a brief overview of synthesis server applications. Chapter 3 describes

the computation of additive synthesis and resonance modeling and provides performance

measurements. Chapter 4 discusses strategies for reducing computation in synthesis algo-

13

rithms and the results of experiments testing human perception of sound produced using

these strategies. Chapter 5 describes the “perceptual scheduling” framework for incorporat-

ing reduction strategies into a synthesis server. Chapter 6 presents the results of experiments

in which listeners evaluate the quality of musical examples synthesized from a server with

perceptual scheduling. Chapter 7 concludes the dissertation and discusses future research

directions.

14

Chapter 2

Sound Synthesis

This chapter introduces sound synthesis and describes several sound synthesis al-

gorithms. It also describes applications called synthesis servers that compute synthesis

algorithms in real time. The chapter concludes with a brief description of synthesis algo-

rithms and server technologies that were used for this dissertation.

2.1 Synthesis Overview and Techniques

A sound is commonly modeled a waveform signal, that is a function y(t) represent-

ing the amplitude of the sound at time t. In digital systems, the continuous time variable

t is replaced by a discrete variable n. The resulting digital waveform y(n/S) represents

the amplitude sampled at time n/S where S is the sampling rate. However, it is common

practice to assume the relationship between sample index n, time t, and sampling rate S

and refer to the digital waveform as y(n).

Waveform representations of sound are similar to image representations of visual

scenes. Images allow efficient transformations on groups of pixels, but very little control

over perceptual or geometric features. When such control is required, a vector- or program-

based representation (e.g, PostScript) is preferred. These representations are also a form

of compression in that they require less space than the images they represent. Sounds can

15

also be represented by programs, with similar advantages for compression and mutability

[108]. The process of generating sound from programs is called sound synthesis.

Consider a synthesis function of a pure tone with constant pitch:

y(n) = A cos (2πfn+ φ) (2.1)

where the parameters A, f and φ represent the peak amplitude, frequency and phase of

the sinusoid, respectively. Instead of storing the entire waveform, one need only store the

three parameters A, f and φ and use them to generate the waveform representation when

needed. Controlling the pitch in the functional representation is accomplished by simply

scaling the parameter f , whereas changing the pitch of a waveform representation requires

complex sample-rate conversion operations to avoid loss of quality (e.g. anti-aliasing to

avoid degrading a scaled image) [113].

The parameters of a synthesis function can themselves be time-varying. Thus, we

can represent pure tones of variable pitch and amplitude:

y(n) = A(n) cos (2πf(n)n+ φ(n)) (2.2)

In this example, the waveform representation has been replaced by three envelope functions

A(n), f(n) and φ(n) representing the changing amplitude, frequency and phase, respectively.

Envelope functions are usually interpolated between points at a lower and possibly varying

sampling rate, called the frame rate. The envelope functions act like the control points of

curves in graphics, allowing independent control over the different dimensions of the sound.

For example, the pitch can be scaled by a factor of two (i.e., raised an octave) without

affecting the rate of the sound, as illustrated in equation 2.3 while the rate can be scaled

by a factor of two without affecting the pitch, as illustrated in equation 2.4:

y(n) = A(n) cos (2π(2f(n))n+ φ(n)) (2.3)

y(n) = A(2n) cos (2πf(2n)n+ φ(2n)) (2.4)

By contrast, time and frequency cannot be scaled independently in a waveform repre-

sentation. Speeding up the sound raises the pitch by the same factor (i.e., the so-called

16

“Chipmunk effect”). The frame rate balances mutability of the envelope functions with

compression. In other words, a higher frame rate offers more degrees of freedom at the

expense of larger representations.

The following subsections describe several synthesis techniques in greater detail.

Subsections 2.1.1 and 2.1.2 focus on additive synthesis and resonance modeling, and sub-

section 2.1.3 describes other commonly used synthesis techniques.

2.1.1 Additive Synthesis

In the previous section, we used a synthesis function that modeled a simple time-

varying sinusoid. We can model arbitrarily complex sounds as a sum of sinusoids:

y(n) =
N∑

i=1

Ai(n) cos (2πfi(n)t+ φi(n)) (2.5)

where N is the total number of sinusoids, also called a partial. Each partial has its own

independent envelope functions Ai(n), fi(n) and φi(n), which together form a sinusoidal

track. This sum-of-sinusoids synthesis technique is called sinusoidal-track modeling or addi-

tive synthesis. The envelope functions of all partials share a common frame rate, which is

then considered the frame rate of the entire model. Although uniform across partials, the

shared frame rate is non-isochronous and can vary (i.e., successive frames need not be a

uniform distance apart). Throughout this dissertation, we assume that all sinusoidal models

have a shared but possibly varying frame rate.

Variations on sinusoidal models include “phase vocoder” models which usually

have a fixed number of sinusoids constrained within frequency bands [38], and the more

general “McAulay-Quatieri” (MQ) sinusoidal models [78] which are used by most modern

computer-based additive synthesizers. In the general models we use, the number of sinusoids

can vary between frames, resulting in birth and death events when a sinusoid begins or ends

inside a model.

Similar to the single envelope-controlled sinusoid described in the previous section,

sinusoidal models have independent time and frequency parameters. Time can be sped up

17

Figure 2.1: A sinusoidal track model visualized using Open Sound Edit. Time is horizontal,
amplitude is vertical, and frequency increases with depth (i.e., into the page). The yellow
lines represent the sinusoidal tracks. The shadows on the ground plane represent the change
in frequency as a function of time. The vertical shadows on the moveable window represent
the instantaneous frequency and amplitude values of the tracks at the indicated time. Phase
is not shown.

or slowed down without changing the pitch, and frequency can be scaled without affecting

the rate of the model [68]. Thus, unlike a sampled waveform models, a sinusoidal model

can synthesize sounds with expressive tempo changes. A user can also “jump” to particular

positions in time within a model, or rearrange the order of frames to create new musical

material from the model [128]. For example, a model of a sung passage can be converted

into a new passage by changing the rate and position of time as the model is being played.

Sinusoidal-track models are most often derived from analyses of real sounds. In

phase-vocoder analysis, a sound is passed through a filterbank where each filter analyzes

18

a small portion of the frequency spectrum. The output of the filterbank is a set of time-

varying amplitude and frequency signals that can be used as the scalable envelope functions

for additive synthesis [85]. More recent analysis tools, such as those developed by the

IRCAM Analysis-Synthesis team [104], produce more general MQ-style models. Loris from

the CERL Sound Group further generalizes MQ models by allowing the data points in

envelopes to fall in between frame boundaries [42]. Some analysis tools such as SNDAN [13]

or Armadillo [74] allow both phase-vocoder and MQ-style models. Visualization and editing

tools such as Open Sound Edit (OSE), illustrated in figure 2.1, allow analyzed models from

a variety of sources to explored visually and modified by composers and sound designers

[20]. Sinusoidal models can also be generated algorithmically. For example, classic analog

waveforms (e.g., sawtooth, square wave, etc.) and their transformation by analog filters can

be efficiently computed from well-known formulae in the frequency domain [19].

Additive synthesis is deeply rooted in both the mathematical modeling of wave-

forms (i.e., Fourier analysis) and the study of human hearing [124]. Moreover, sinusoidal-

track representations are linear in the frequency domain with respect to several impor-

tant transformations, including independent control of pitch/frequency, amplitude and time

scales [97], interpolation between sounds (i.e., morphing) [55], and spectral envelopes (i.e.,

amplitude as a function of frequency), which makes them easier to control than synthesis

techniques such as frequency-modulation (FM) synthesis which map less intuitively into the

frequency domain [31]. It should therefore come as no surprise that musicians and musical

instrument makers have long been interested in additive synthesis, starting with Thaddeus

Cahill’s electromechanical Telharmonium in the late 1800’s [87] and moving to electronic

hardware [37] and eventually software [44] implementations. However, the generality and

ease of use of additive synthesis comes at the expense of large representations. An accurate

model of a sound may require hundreds of tracks and frames. In fact, a highly detailed

model may be larger than the corresponding waveform representation. Managing births

and deaths in variable-size models further complicates synthesis. Consequently, sound syn-

19

thesis modeling has explored other representations that reduce the space and complexity of

a sound specification.

2.1.2 Resonance Modeling

Resonance is the response of an acoustic system to a sound source, called an

excitation. A resonance model represents sounds as an excitation and resonance. Given

an excitation waveform x(n), the resonance can be represented as a bank of second-order

filters:

yi(n) = aix(n) + b1iyi(n− 1) + b2iyi(n− 2) (2.6)

y(n) =
N∑

i=1

yi(n) (2.7)

where N is the number of filters in the resonance model, yi(n) is the response of the ith filter,

ai is the input scaling coefficient for the filter and b1i and b2i are the feedback coefficients

for the previous two samples. The coefficients of each filter can be expressed in terms of

more perceptually meaningful parameters: amplitude, frequency and bandwidth.

ai = Ai (2.8)

ri = e−πki/S (2.9)

b1i = 2r cos 2πf/S (2.10)

b2i = −r2 (2.11)

where S is the sample rate of the output waveform and Ai, fi and ki are the amplitude,

frequency and bandwidth, respectively, of the ith resonant filter.

If the excitation is an impulse, the resonance can be modeled as a special case of

additive synthesis in which the frequency and phase of each sinusoid is constant and the

amplitude decays exponentially:

y(n) =
N∑

i=1

Aie
−πkin cos 2πfin (2.12)

20

The amplitude Ai determines initial energy of the partial, and the bandwidth ki determines

the rate of decay. A smaller bandwidth means a longer decay, and a bandwidth of zero

means the resonance stays at constant amplitude. Since the entire evolution of each decaying

sinusoid is defined by just three numbers, resonance models require far less data to specify

than general additive synthesis. Any instrument that is struck, plucked, or otherwise driven

by a single brief burst of energy per tone can be efficiently modeled using impulse-driven

resonances. These instruments include pianos, most percussion instruments, plucked strings,

and many of the modern extended techniques for traditional orchestral instruments (e.g.,

key clicks on wind instruments).

The use of impulse-driven resonance models, as described by Potard et al. [90]

follows earlier work using tuned resonant filters to model acoustic resonances of physical

systems, including a VLSI-based system by Wawrzynek [126] and the CHANT project by

Rodet et al. [105]. These systems were used to synthesis both impulsive sounds (e.g.,

percussion) and non-impulsive acoustic sounds (e.g., flute and human voice) by combining

different excitation signals based on nonlinear functions with appropriately tuned banks

of resonant filters. However, the resonance-modeling work described in this dissertation

focuses only on impulse-driven models that can be modeled with exponentially decaying

sinusoids.

Resonance models exhibit the same perceptually meaningful control properties

of general additive synthesis models, including independent control of amplitude and fre-

quency. While the decaying-sinusoid resonance models also include independent time scal-

ing, filter-bank models do not support time scaling because they require knowledge of the

state of the filters during the previous two samples.

Like sinusoidal-track models, resonance models are often derived from analysis of

real sounds. Techniques include fast exponential modeling [88] and matrix pencil methods

[67]. The matrix pencil methods are slower but more accurate for short or closely-spaced

partials. The compact and perceptually meaningful parameter space of resonance models

21

also makes them ideal for algorithmic sound-model generation. OSE allows users to con-

struct their own resonance models from algorithmically generated primitives (e.g. beating

pairs, harmonic series with 1/f amplitudes and decay rates, etc.) [21]. Recent work by

Madden and Wessel employs a hybrid technique in which new resonance models are gener-

ated by fitting analyzed models to fixed frequency grids [75].

2.1.3 Other Synthesis Techniques

This subsection describes other commonly-used synthesis techniques including

granular synthesis, frequency-modulation synthesis, and physical-modeling techniques.

Granular synthesis is an alternative to additive synthesis that is based on a theory

developed by Gabor [50]. In granular synthesis, a waveform representation is decomposed

into tiny waveform representations, called grains, using a Gabor transform or other time-

frequency analysis technique [103]. A new waveform is synthesized by selecting a sequence

of grains, scaling each grain by an envelope function and combining them in an overlap-add

process. If the sequence of grains is exactly the same as the sequence from the analysis,

the original waveform representation will be resynthesized. If grains from the analysis se-

quence are removed without changing the order of the remaining grains, a time-compressed

version of the original waveform will be synthesized. If grains are repeated without chang-

ing the order (i.e., sequence G1, G2, G3, . . . becomes G1, G1, . . . , G2, G2, . . . , G3, . . .), then a

time-stretched version is synthesized. Thus, similar to additive synthesis, granular synthesis

affords independent control over the duration of synthesized waveform representations. If

the length of each grain is proportional to the pitch period (i.e., the inverse of the pitch)

of the analyzed waveform, then the pitch of original waveform can be independently scaled

as well. This special case of granular synthesis is called pitch-synchronous overlap-add,

(PSOLA) synthesis [86]. Another variation of granular synthesis uses short-term spectral

representations for the grains instead of time-domain waveform representations [102]. The

computational cost of granular synthesis is proportional to the number of grains required.

22

A typical grain size is 20ms, or 882 samples at a 44100Hz sampling rate. A waveform repre-

sentation lasting one minute would require approximately 6000 grains. Real-time granular

synthesis requires less computation than additive synthesis for time-scaling and pitch-scaling

applications, a feature that has made it more attractive than additive synthesis for many

computer musicians who wish to use these transformations. However, it is possible to im-

prove the efficiency by reducing the number of grains used to synthesize sounds requiring

less temporal resolution (e.g., steady-state sounds versus attack transients).

In frequency-modulation (FM) synthesis [25], the phase of a sinusoid, called the

carrier, is modulated by the output of another sinusoid, called the modulator:

y(n) = Accos(2πfc + φcAmcos(2πfm + φm)); (2.13)

where Ac, fc and φc are the amplitude, frequency and phase of the carrier, respectively and

Am, fm and φm are the modulator parameters. FM synthesis can be formulated either as

a modulation of phase, as defined in equation 2.13, or frequency. The name “frequency-

modulation” is used for both formulations. The sinusoidal modulator can be replaced by

another frequency-modulated sinusoid (i.e., recursive FM) or a sum of sinusoids. Using only

two to six sinusoids, FM synthesizers can produce a wide variety of spectrally rich timbres

at a low computational cost. Although FM synthesis algorithms have been widely used in

computer music, they do not readily lend themselves to the problems we are addressing

because they cannot be easily decomposed into perceptually meaningful components for

reduction.

Physical-modeling synthesis techniques attempt to model the physics and play-

ing techniques of acoustic instruments. Digital waveguides [112] use delay lines, amplifiers

and filters to simulate traveling waves in air columns, strings and resonating chambers.

The Karplus-Strong plucked string algorithm loops a noise burst through a pitch-controlled

delay line [64]. “Physically Informed Stochastic Event Modeling” (PhiSEM) is useful for

simulating percussive shaker and ratchet instruments [30]. It is included in Cook’s STK

toolkit [29] and has been ported to Open Sound World. Modal synthesis allows users to syn-

23

thesize sound directly from the equations describing the movement of vibrating structures

as a sum of vibrations, or modes [39]. Some physical models incorporate frequency-domain

spectral representations or resonant filterbanks (e.g., Wawrzynek’s resonant-filter synthe-

sizer, described in the previous subsection), and can potentially benefit from the reduction

strategies described in this dissertation.

2.2 Synthesis Servers

Traditional hardware music synthesizers motivated the development of synthesis

models and the techniques for controlling them [9][63]. Early digital synthesizers were con-

structed using custom-designed hardware and most relied on functions such as sampling

and frequency modulation that are inexpensive to compute. Because large additive syn-

thesis and resonance models are computationally expensive, they were not widely used in

custom-designed hardware. However, modern computers are fast enough to implement a

synthesis engine in software. Software synthesizers offer increased flexibility and extensibil-

ity compared to hardware synthesizers.

Just as a hardware synthesizer produces sound in response to input controls (e.g.,

piano/organ keyboard input or another control device), a software synthesizer generates

sound output in response to message representing expressive musical input. We call this

software synthesizer a synthesis server.

As illustrated in figure 2.2, the synthesis server reads sound representations from

storage, transforms them in response to user input from a controller, synthesizes the trans-

formed representation and outputs the resulting audio waveform. The storage, control and

output for the synthesis server may be part of a single local system, or distributed to several

host computers connected by a computer network. Sound representations may be stored

on a local disk, network file system or the World Wide Web. The Sound Description Inter-

change Format (SDIF) is a new standard for storing and transmitting a variety of sound

representations that can be used in synthesis servers, including sinusoidal and resonance

24

Figure 2.2: A synthesis server

models [132]. User input may be from widgets in a local user interface, or messages re-

ceived via MIDI or Open Sound Control (OSC) protocols [131]. Audio output may be

written to a local audio device, a disk file or network device.

Examples of dedicated synthesis servers include softcast for additive synthesis and

resonance modeling [49] and res for synthesis of resonance models using filterbanks [45].

Softcast is described in the next subsection. Musicians can also construct their own synthesis

servers using a language such as SAOL or Open Sound World, which are described in

subsections 2.2.2 and 2.2.3, respectively.

2.2.1 Softcast

Softcast reads sinusoidal tracks from SDIF representations. It can also interpret

resonance models as exponentially decaying sinusoids. The models are stored using SDIF.

A user-controllable virtual time system, called a time machine, controls the temporal rate

and position within the model. Modifying the parameters of the virtual time system allows

the synthesized sounds to be sped up, slowed down, run backwards, etc. The time machine

25

Figure 2.3: A diagram of softcast, showing the flow of sound representations and control
messages. The “timbral prototype” operation interpolates the sinusoidal model for virtual
time values supplied by the time machine.

and sound model are used to compute instantaneous amplitude, frequency and phase values

for each of the tracks, which are then sent through a series of frequency-domain transform-

ations, including transposition, inharmonicity, and dropping partials by frequency range or

harmonic number (i.e., drop the third partial or drop all partials outside a 400Hz to 500Hz

band). The final output of these transformations is then converted to audio samples by an

additive synthesis engine. A schematic of softcast is shown in figure 2.3.

Musicians who need synthesis functions not implemented in a dedicated server like

softcast can use a sound synthesis language like SAOL or OSW to build a custom synthesis

server. Examples of SAOL and OSW synthesis servers implementing the basic functionality

26

of softcast (i.e., synthesizing scalable sinusoidal models from SDIF representations) are

described below.

2.2.2 SDIF additive synthesizer in SAOL

In SAOL, users create functional units, called instruments and time-stamped lists

of control parameters for instruments, called scores. Instruments are procedures composed

of statements that use standard “C-like” expressions and primitive functions called opcodes.

Figure 2.4 illustrates a SAOL instrument, track, that synthesizes SDIF sinusoidal-track

models in an MPEG-4 structured audio stream. This instrument can be used as the basis

for a synthesis server. The SDIF representation is embedded in the MPEG-4 stream. As the

stream advances, successive frames of the sinusoidal model are read into wavetables. The

instrument is alerted to these updates via the changed control variable. It then reads the

amplitude and frequency values from the wavetables into arrays amp[] and freq[] (phase

values are ignored by this synthesizer). The amplitude and frequency arrays are used to

control a bank of oscillators (i.e., oscil[]) that synthesizes a waveform representation as

a sum of sinusoid functions. The oscillator bank is a primitive data structure in SAOL

called an oparray. In addition to the built-in functions and data structures, track utilizes

custom opcodes getmatrix, maketracks and get ind to convert from the dynamically

updated SAOL wavetables to the array representation of the current sinusoidal-model frame.

Getmatrix and maketracks are listen in figure 2.4. Get ind is not shown. This instrument

and other SDIF synthesizers implemented in SAOL are described in greater detail by Wright

and Scheirer [135].

Although each instantiation of a SAOL instrument represents a single “note event”,

the note can be arbitrarily long. In this case the note is the entire duration of the sinusoidal

model, which is incrementally read and synthesized at the control rate (i.e., “k-rate”),

allowing the SDIF data to be modified in real time between successive control rate events.

An efficient real-time implementation of the SAOL instrument can be created using

27

instr track() {

imports table sdif_table1;

imports table sdif_table2;

imports table sdif_table3;

imports table sdif_table4;

tablemap tab(sdif_table1, sdif_table2,

sdif_table3, sdif_table4);

table mydata(empty,1000);

table pure(harm,1024,1);

imports exports ksig changed;

ksig freq, smfreq, max, f[1024],

amp[1024], ind[1024];

asig i, sum;

oparray oscil[1024];

// control-rate

if (changed) {

getmatrix(tab[changed],1,mydata);

changed = 0;

}

maketracks(f,amp,ind,mydata,max);

// audio-rate

i=0; sum = 0; while (i < max) {

sum = sum + oscil[i](pure,f[i]) * amp[i];

i = i + 1;

}

output(sum);

}

kopcode getmatrix(table t,ivar ind,table mat) {

// put matrix type #ind from t1 in mat

ksig i, pos, r, c, ct, x, found, type;

i = 0; pos = 1; found = 0;

while (!found) {

type = tableread(t,pos);

r = tableread(t,pos+1);

c = tableread(t,pos+2);

if (type == ind) { found = 1; } else {

pos = pos + 3 + r * c;

}

}

tablewrite(mat,0,r); tablewrite(mat,1,c);

ct = 0; while (ct < r * c) {

x = tableread(t,ct + pos + 3);

tablewrite(mat,ct+2,x);

ct = ct + 1;

}

}

kopcode maketracks(ksig freq[1024],

ksig amp[1024],ksig ind[1024],

table mat, ksig max) {

ksig i, nr, ix, a, f, ph, k;

ksig used[1024], oldmax;

nr = numrows(mat);

oldmax = max;

i = 0; while (i < max) {

used[i] = 0; i=i+1;

}

i = 0; while (i < nr) {

ix = matread(mat,i,0);

f = matread(mat,i,1);

a = matread(mat,i,2);

ph = matread(mat,i,3);

k = get_ind(ix,ind,max);

if (k > max) { max = k; }

freq[k] = f; amp[k] = a;

ind[k] = ix; used[k] = 1;

i = i + 1;

}

// manage births and deaths

i=0; while (i<max && max > oldmax) {

if (!used[i]) {

freq[i] = freq[max-1];

amp[i] = amp[max-1];

ind[i] = ind[max-1];

max = max - 1;

}

i = i + 1;

}

}

Figure 2.4: SAOL code implementing track, an instrument that performs additive synthe-
sis from SDIF-based sinusoidal models. The instrument makes use of auxiliary functions
getmatrix and maketracks. This instrument can be used as the basis for a synthesis server.

28

the sfront SAOL-to-C translator [69].

2.2.3 Additive Synthesis Server in Open Sound World

Open Sound World (OSW), is a “visual dataflow programming language,” similar

to Max/MSP and the process-network and discrete-event models in Ptolemy. In OSW,

primitive components called transforms are connected together to form dataflow networks

called patches, as illustrated in figure 2.5. Patches are themselves transforms, and can be

embedded in other patches, allowing abstraction and top-down design. Nested patches cre-

ate a hierarchical name space in which every parameter of every transform has a unique

name. The hierarchical name space affords expressibility not found in pure dataflow pro-

gramming. For example, several transforms can refer to a single shared resource by its

name, even when the transforms and the resource are in separate patches. OSW also in-

cludes a strong type system that enforces type compatibility between connected transforms

and makes programs more robust. Many types, such as sampled audio signals, are associ-

ated with colors in the visual programming environment to aid rapid reading and editing

of programs. Examples of color-coded types are described in figure 2.5.

OSW includes a large set of standard transforms for basic event and signal pro-

cessing, including transforms that manipulate sinusoidal-model and resonance-model rep-

resentations and synthesize waveform representations from them. Figure 2.5 illustrates an

OSW patch containing a softcast-like synthesis server. Sinusoidal models are read from

an SDIF file into an SDIFBuffer, a shared resource. The SDIFBuffer is given an instance

name, timbralproto, that can be used by other transforms to access the resource. Because

SDIF files are subdivided into one or more time-ordered lists, called streams, the hierar-

chical name can have a number appended to access a specific stream (more information

about streams and the structural details of SDIF files can be obtained elsewhere [132]).

The sdif::ToSinusoids transform accesses the first stream in the SDIF buffer using the name

timbralproto/1. This transform accepts virtual time values from a TimeMachine transform

29

Figure 2.5: An additive synthesis server in OSW with inharmonicity and amplitude and fre-
quency scaling. The transform sdif::ToSinusoids performs the same function as the timbral
prototype operation in softcast, interpolating the sinusoidal model from the SDIF buffer
timbralproto using virtual time from the time machine. The remaining inlets on the Inhar-
monicty and ScaleSinusoids transforms can be used to connect controls from user-interface
widgets, MIDI, etc. The blue wires represent sinusoidal models, the red wires represent
audio signals, the purple wires represent virtual time and the black wires represent scalar
types (e.g., numbers).

(i.e., similar to softcast) and outputs a data structure containing instantaneous frequency,

amplitude and phase values of the model corresponding to the requested location in time.

This data structure is then passed to transforms that perform user-controlled inharmon-

icity and amplitude- and frequency- scaling operations on the sinusoidal parameters. The

result is then sent to the AddSynth transform, which uses additive synthesis to convert the

sinusoidal-model representation into a waveform representation, which is then output via

30

the audio output transform.

The set of available transforms can be easily extended to include more advanced

operations. Since the data types passed between transforms are C++ types (i.e., classes

or primitive scalars), it is relatively straightforward to add new data types as well. The

specification of transforms is described briefly in section 3.2. Details about the real-time

scheduling and execution in OSW that are relevant to this research are discussed in that

section as well. More information on OSW can be obtained elsewhere [23].

While development systems such as OSW allow users to select only the sound

transformations and control structures they wish to use (i.e., as opposed to the large fixed

set of functions in softcast) and modify them in real time, this versatility comes at a cost.

In addition to the overhead of dynamic scheduling, the possibility exists for users to build

patches that very quickly exceed the available computational resources. Rather than sacri-

fice dynamism, as is done in languages such as Aura which statically schedules components

on available processors prior to execution [33], we wish to enhance the dynamic scheduling

used in OSW to gracefully trade quality for computational bandwidth.

2.3 Sound synthesis used in this research

This dissertation focuses on additive synthesis and resonance modeling because

these techniques are easily decomposed into partials. Perceptual quality and computation

requirements can both be described as functions of the number of partials in the model. The

relationship between reduced computation and audio quality can therefore be more easily

quantified than in other synthesis techniques. The potential applications of perceptual

scheduling to other synthesis techniques such as granular synthesis and physical modeling

are not explored here, but mentioned as opportunities for future research.

OSW is used to implement the synthesis algorithms and reduction strategies devel-

oped in this dissertation because it contains several functions and data structures dedicated

to efficient additive synthesis and resonance modeling as well as a specialized real-time

31

profiling tool that measures the execution time of both individual transforms and entire

programs. Its open architecture also allows the perceptual scheduling algorithm and its

associated computation-reduction procedures to be easily integrated into the system.

32

Chapter 3

Synthesis Computation

We now turn our attention to the implementation and computation of additive

synthesis and resonance models in OSW. Several synthesis algorithms are described, an-

alyzed and measured to determine their computational requirements. The execution and

scheduling of OSW transforms is then discussed, including the implementation of reactive

real-time quality-of-service (QoS) constraints and potential failures of the current architec-

ture.

3.1 Synthesis Algorithms

This section discusses the computation of additive synthesis and resonance mod-

eling in greater detail, including both computation complexity and measurements of per-

formance on test implementations in OSW.

3.1.1 Additive Synthesis using Oscillators

We present two algorithms for additive synthesis: a traditional oscillator-function

approach and an algorithm based on the inverse Fast Fourier Transform (IFFT). The

oscillator-based approach uses the definition of additive synthesis presented in equation

2.5:

33

y(t) =
N∑

i=1

Ai(n) cos 2πfi(n)t+ φi(n) (3.1)

where N is the number of partials in the model. A direct implementation requires θ(N)

operations per sample assuming no interframe interpolation of amplitude, frequency or

phase. The cosine can be implemented either directly, which is compute intensive, or using

a table-lookup function, which is memory intensive. If we ignore the independent phase

function, we can reduce the multiplication fi(n)t to addition by noting that frequency is

proportional to the inter-sample change in instantaneous phase:

ψi(n) = ψi(n− 1) + 2πfi/S where 1 ≤ i ≤ n (3.2)

y(n) =
N∑

i=1

Ai(nS) cosψi(n) (3.3)

where ψi(n) is the instantaneous phase of the ith partial at the time of the nth sample.

However, this algorithm still requires θ(N) operations.

OSW includes a transform, AddSynth that implements this algorithm using a table-

lookup function. It accepts sinusoidal tracks as input and outputs audio samples. The

run-time performance of AddSynth was measured using a patch that contained a sinusoidal

model to produce a band-limited sawtooth waveform, as illustrated in figure 3.1. A band-

limited sawtooth waveform of pitch f can be approximated as a sum of N sinusoids with

frequencies 1f, 2f, 3f, . . . , Nf (where N < S/2f) and amplitudes 1, 1/2, 1/3, . . . , 1/N . In

this test, we generated a waveform of pitch 20Hz because it can be approximated by as

many as 1000 partials at a 44100Hz sampling rate.

By running the patch for 60 seconds using successively larger sinusoidal models

and measuring the total execution time of each transform using the Profile transform, we

were able to plot the performance (measured as average CPU time per audio sample) with

respect to the number of sinusoids in the model, as shown in figure 3.2. When running at a

44100Hz sampling rate, the average time to compute each sample must be less than about

20µs (i.e., the sample period minus a small amount of overhead) to remain in real time.

34

Figure 3.1: A test patch for AddSynth. The AnalogVCO transform creates the sinusoidal
model of the band-limited sawtooth wave used for the performance tests. The OneShot
transform is used to turn off the patch after 60 seconds have passed.

A 400Mhz Intel Pentium II running Linux was able to synthesize up to 350 partials in real

time. As expected, the CPU time of the AddSynth transform, as well as the entire patch,

increased linearly with respect to the number of partials. Using these measurements, we

estimate a computational cost of 0.053µs per sample per partial. This value, as well as the

other per-partial costs stated in this chapter, will be used for predicting computational cost

in the perceptual scheduling strategy described in chapter 5.

3.1.2 Transform-domain Additive Synthesis (TDAS)

A more efficient algorithm for additive synthesis, called transform-domain additive

synthesis (TDAS), involves the use of discrete frequency-localizing transforms such as the

inverse Fast Fourier Transform (IFFT). Although other transforms, such as the inverse fast

35

Figure 3.2: Performance results for the AddSynth test patch. The graph represents perfor-
mance (measured as µs of CPU time per sample) versus the number of partials in the model.
The dotted line above 20 µs represents the threshold between real-time and non-real-time
performance on our reference machine when running at a 44100Hz sampling rate.

Hartley transform or discrete wavelet transform can be used as well, only the use of IFFTs

will be discussed. Using an IFFT to synthesize “continuous” sinusoidal tracks requires

several additional steps, including the use of a “synthesis window” to map the frequencies

onto one or more bins (i.e., frequency-domain samples) of a discrete spectrum and an

overlap-add process to smooth the discontinuous outputs of successive IFFTs. A TDAS

algorithm incorporating these steps is first described in a dissertation by Davis in 1974 [35].

First, the frequency, amplitude and phase values of each sinusoid in the input model must

be incorporated into a discrete spectrum to produce a complex-valued array used by the

36

Figure 3.3: Substitution of AddByIFFT for AddSynth in the test patch.

IFFT. Each sinusoid contributes to the spectrum as follows:

X(k) =
N∑

j=1

Aj(n)eiφjW (fj/S − k) (3.4)

where k is the index of the bin in the spectrum and W is the Fourier transform of the

window function being used. Because building a spectrum of size K in this manner requires

NK steps, the spectrum is approximated using only a small constant number of large values

from W (typically six or eight), resulting in θ(N) steps. The IFFT of spectrum X is then

computed to produce a block of samples w(l)x(n + l), where w is the window function

and 0 ≤ l < K. Successive blocks of samples are then added with overlap (i.e., the last

K/2 samples of one block are added to the first K/2 samples of the next block). Because

building the spectrum takes θ(N) steps and computing the IFFT takes K log2K steps, and

these steps are performed once for every K samples, the algorithm requires θ(N/K+log2K)

steps per sample. For models with hundreds of partials and typical values of K (e.g., 128

37

Figure 3.4: Performance results for the AddByIFFT test patch. These measurements were
taken using an IFFT with 128 bins.

bins), this implementation results in a potentially significant reduction, assuming an efficient

implementation of the IFFT is available.

An implementation of TDAS was developed by Freed for SGI MIPS platform [44].

On a MIPS R4000 processor, this implementation synthesized approximately 300 partials

compared to about 60 partials using oscillator-based synthesis on the same platform [47].

A port of Freed’s implementation to Intel processors is available in OSW via the AddByIFFT

transform. Like AddSynth, it accepts sinusoidal tracks as input and outputs audio samples.

It can be easily substituted into our test patch, as illustrated in figure 3.3.

Using TDAS in the test patch results in a significant performance gain, as illus-

38

trated in figure 3.4. On the 400Hz Pentium II reference machine, as many as 1000 partials

can be computed in real time. Once again, the execution time of both the AddByIFFT

transform and the entire patch is linear with respect to the number of partials, and we

can estimate a computational cost of 0.016µs per sample per partial. The fixed cost of the

128-bin IFFT is estimated at 1.3µs per sample. Although AddByIFFT requires a greater

overhead per sample, it can synthesize more partials per sample than AddSynth, and is

therefore preferred for most applications.

A potential disadvantage of TDAS is that a separate instance of the algorithm must

be used, and therefore an additional IFFT computed, for each audio output channel. For

example, eight instances of AddByIFFT to support eight output channels require approx-

imately 10.6µs per sample to compute the IFFTs. The additional overhead reduces the

number of partials computable in real time by approximately 400. However, this still leaves

approximately 600 partials computable in real time, which is more than can be computed

by a single instance of AddSynth. Consequently, there is no performance benefit to using

AddSynth in this situation. However, if we increase the number of channels to sixteen, the

time to compute the IFFT’s exceed the 20µs available in real time, while sixteen instances

of AddSynth can still be used in real time if the total number of partials needed is less than

300.

3.1.3 Resonance Modeling

Resonance modeling can be implemented directly using the filter-bank method

described in equations 2.6 and 2.7:

yj(n) = aix(n) + b1iyi(n− 1) + b2iyi(n− 2) (3.5)

y(n) =
N∑

i=1

yi(n) (3.6)

The N filters and summation require at least 3N multiply-add operations per sample.

Similar to oscillator-based additive synthesis, this algorithm is linear with respect to the

39

Figure 3.5: A test patch for Resonators. The SDIF buffer contains the piano model, which
is loaded into Resonators using the sdif::ToResonances transform.

size of the model. However, we expect to be able to compute more resonance partials than

additive synthesis partials using the same computational bandwidth because resonances do

not require the additional computation of a transcendental function.

OSW includes a transform Resonators that implements a resonant filter bank. It ac-

cepts a resonance model representation (i.e., a set of frequency, amplitude and bandwidth/decay-

rate values) and an audio input for the excitation, and outputs the result of the filter-bank

calculation as audio samples. A patch that uses an impulse to drive the resonators is

illustrated in figure 3.5.

The run-time performance of Resonators was measured using a model of a piano

tone, where the number of partials was fixed using the ResLimit transform. In each test,

an impulse was sent to Resonators once every second for 60 seconds. During successive

executions of this patch, the number of partials was increased (i.e., by increasing the fixed

40

Figure 3.6: Performance results for the Resonators test patch.

limit set by ResLimit). The results are shown in figure 3.6. CPU time increases linearly as the

number of resonance partials increases, with a maximum of about 350 partials computable

in real time using our reference machine. Because the test patch also continuously executes

the Ticker and Impulse transforms to generate a new impulse every second, the difference

between the execution time of Resonators and the entire patch is slightly greater than

in the additive synthesis examples, where only the synthesis and output transforms were

executed continuously. Based on the measured execution times for Resonators, we estimate

a computational cost of 0.047µs per sample per partial.

Resonators is a general filter bank that can be applied to any excitation signal.

If only the impulse response is needed (i.e., to model struck or plucked instruments), the

41

resonance model can be converted to an exponentially decaying sinusoidal model using the

Res2Sinusoids transform. The output of Res2Sinusoids can then be connected to AddSynth

or AddByIFFT to perform additive synthesis, with similar performance results as above.

Although the performance of oscillator-based additive synthesis can be optimized for fixed

frequencies and exponentially decaying amplitudes [46], such an algorithm has the same

computational complexity and does not compete with the performance gained using TDAS

except when large numbers of audio output channels are required.

The performance of Resonators was not measured with non-impulse excitation

signals. However, the excitation does not affect the number of instructions executed per

sample by the resonant filter bank, so no significant difference in performance is expected.

3.2 Execution and Scheduling Issues

We begin the discussion of program execution in OSW by describing transforms in

greater detail. A transform is specified as a collection of inlets, outlets, state variables and

activation expressions that a user can view or modify. A state variable is a public variable

of a transform that can be queried or modified by other transforms in an OSW patch. Inlets

and outlets are special cases of state variables used in connections. An activation expression

is a piece of C++ code that is executed when inlets or state variables are modified. It is

specified by the variables that will trigger this activation, and the code that should be

executed. The specification of Sinewave, a transform that implements a simple sinusoid

oscillator is shown in table 3.1.

The activation expression looks like a continuous function of time, or a discrete

sample-by-sample computation. However, it is actually computing a vector of samples from

a discrete time variable, timeIn. Judicious use of standard C++ in the implementation allows

transform writers to be spared the details and complexities of vector-based computation [22].

The state variables NumberOfSamples and SampleRate are inherited from a more general

class of time-domain transforms that manipulate time-domain samples.

42

Sinewave. Generates a pure tone (i.e., sine wave) signal.
Name Type Default

Inlets timeIn Time
frequency float 440.0

Outlets samplesOut Samples

Inherited SampleRate float 44100.0
NumberOfSamples int 128

Activation Expression activation1, depends on timeIn, no delay
samplesOut = sin(TWOPI * frequency * timeIn);

Table 3.1: Specification of the Sinewave transform

Execution flows from one transform to another by sending values from an outlet

to an inlet and then triggering activation expressions that depend on the inlet. Consider

the patch in figure 3.7a. When a user updates the value of the number in the first number-

box transform, it passes the number from its outlet to the inlet of the addition transform,

triggering an activation expression that adds 2 to the input number and sets the outlet to

the sum. The outlet then passes its value to the inlet of the second number box, triggering

an activation expression that displays the number on the screen. In figure 3.7b, the Sinewave

transform computes a vector of samples using the expression in table 3.1, and assigns the

new sample vector to its outlet. The outlet then passes the vector to an inlet of the audio

output transform, triggering an activation expression that outputs the samples to audio

output device. We leave the explanation of how the activation expression in the Sinewave

is itself triggered until section 3.2.2.

3.2.1 The Scheduler

OSW uses a greedy data-driven multiprocessor scheduler for activation expres-

sions. An activation expression is dynamically queued when all dependent variables (i.e.,

inlets) are changed. Each processor runs a thread that executes queued activations or blocks

if there are no activations on the queue:

43

a) b)

Figure 3.7: Simple OSW patch examples to illustrate execution flow. a) Adding 2 to the
value of a number box control. b) Audio output of a pure sine wave.

Activation-Scheduler()
while true

do pop an activation expression off the queue and execute it .

In this algorithm, the order of execution within a patch is constrained only by the topology of

the graph. For example, in the hypothetical patch shown in 3.8a, the activation expressions

of transforms 2 and 3 must be executed after transform 1; transforms 4 and 5 must be

executed after 2; and transform 3 after 6. However, there is no constraint on the relative

ordering of 4 and 5, 2 and 6, etc., which can be executed in parallel on multiprocessor

architectures. Additional constraints can be made explicitly. For example, in figure 3.8

we could require 2 to complete before 3, which we define to imply that 4 and 5 must also

complete before 3. Such explicit ordering is required to implement the real-time constraints

described in the next section.

When a chain of transforms with no opportunities for parallel execution occurs,

as in figure 3.8b, the entire chain is scheduled as a single event. Once transform 1 is

activated, transforms 2 and 3 will then be activated in succession without intervention from

the scheduler.

In addition to simplicity and the ability to seamlessly utilize multiple processors,

44

a) b)

Figure 3.8: a) A hypothetical patch with implicit ordering and parallelism. b) A patch with
no parallelism that can be scheduled as a unit.

this algorithm allows execution to continue while patches are being edited, with activation

expressions of new transforms being dynamically scheduled and outstanding activations

from deleted transforms being removed from the queue. There is no need for a separate

compilation or static-scheduling phase between successive modifications of a patch. Unlike

traditional applications programming, in which program creation, optimization and debug-

ging are separate phases, real-time music applications in OSW and similar systems are built

incrementally. Initial prototypes are refined by dynamically modifying the patch, with the

state of unmodified components maintained during the editing. For example, the waveform

output of a synthesis algorithm might be amplitude-scaled to maintain a specific loudness

in the acoustic environment. As the user modifies the synthesis algorithm that generates

the waveform, maintainance of the amplitude-scaling state is necessary to preserve the per-

ceived loudness. The dynamic scheduling in OSW facilitates this incremental programming

style.

3.2.2 Reactive Real-time Constraints

OSW is designed for implementing reactive real-time audio and music applications.

Reactive real-time involves maintaining output quality while minimizing latency, the delay

45

between input and output of the system, and jitter, the change in latency over time [14].

Because of the combination of human sensitivity for jitter and the need for reactive response

to gestures, the latency goal for the OSW scheduler is set to 10± 1ms [26] [120].

It is the job of the audio output device to implement these QoS constraints, be-

cause if the audio output is too late, underflow will occur leading to audible clicks. If

it arrives too early, latency increases to unacceptable levels. The audio output device is

represented in OSW as a transform that has two state variables that represent these con-

straints. SampleBufferSize is the block size, or number of samples that are sent to the device

at once, and TargetLatency is the total number of samples that are allowed to be placed

in the output queue awaiting realization by the sound hardware. In order to fulfill real-

time requirements, the audio output device has to be able to determine when the signal

processing that produces the samples it will output is performed. This is accomplished by

controlling virtual time sources via a clock. Clocks measure “physical” time from hardware

devices, such as an audio device or network time source, and have fixed rates and periods.

Virtual time is a scalable representation of physical time. Virtual time is handled implicitly

by any transform that includes an inlet of type Time (e.g., the Sinewave transform described

in the previous section) or explicitly by time machines, which scale input from clocks or

other time machines.

Although OSW contains several clocks attached to different devices, the default

behavior is to use the main audio output device as the main clock. The audio-output de-

vice clock implements block-precise timing in which a clock period T is the sample block

size divided by the sample rate of the device. The audio output device outputs a block of

samples and advances the clock by T via the following activation expression:

while(SamplesInQueue() > TargetLatency - SampleBufferSize) {
DoSomethingUseful();

}
FlushSamples();
clock = clock + SampleBufferSize / SampleRate;

46

Figure 3.9: The audio output device manages real-time latency constraints. The output
buffer is currently filled beyond TargetLatency. When it drains below this point, additional
samples will be computed until the buffer is refilled. If the buffer drains completely, an
audible click is heard.

As illustrated in figure 3.9, updating the value of the clock triggers the virtual

time handlers, such as time machines or transforms like Sinewave with time inlets, which

then drive several transforms (collectively labeled F in 3.9) that synthesize or process sound

to be output during the period. Finally, the audio output activation is scheduled to recur

at the end of the period after F has executed. The DoSomethingUseful operation is sys-

tem dependent, and may include deferring to another thread or process to perform other

events such as MIDI input. When the output buffer is sufficiently drained (i.e., below

TargetLatency), FlushSamples outputs the block of samples for this period.

3.2.3 Potential QoS Failures

The dynamic scheduling and real-time-constraint architecture of OSW works well

as long as the total execution time for patches remains below the threshold for real-time

performance (i.e., 20µs per sample on the reference machine when running at a 44100Hz

sampling rate), in which case the system will remain at equilibrium with samples replaced

at the same rate they are drained from the buffer. If the execution time is longer, then

samples will be drained from the output buffer faster than they will be replaced at a rate

47

proportional to the sample-computation time. For example, if a new sample takes 40µs to

compute, two samples will have already been output from the buffer, so the net number of

samples in the output buffer will decrease by one. If the buffer drains completely, there will

be a gap in the audio output, perceived as a loud click followed by a brief silence.

Such a QoS failure is unacceptable for music applications, especially during a live

performance. Increasing the size of the output buffer for larger, more compute-intensive

patches will prevent underflow, but at the expense of increased latency and jitter. Cur-

rently, composers and engineers writing patches can manually reduce the computation by

removing transforms or decreasing the size of sound models used (e.g., by manually remov-

ing components from additive synthesis or resonance models), but such manual reductions

may compromise sound quality as well as artists’ intentions. They are also hard to do,

especially without profiling.

Even in patches where the average per-sample execution time remains below the

threshold for real-time performance, the execution time may temporarily increase due to

exceptions or interrupts, responses to discrete, non-deterministic real-time events (i.e., from

user input) that may activate additional transforms, and dynamic modifications to sound

models (i.e., real-time editing or loading of SDIF buffers containing sound models for syn-

thesis).

In the following chapters, algorithms are described that gracefully and dynamically

trade audio quality for computational bandwidth. These algorithms can be used to reduce

automatically the computation required to maintain QoS guarantees and preserve audio

quality and musical intention during large patches, exceptions and dynamic modifications.

48

Chapter 4

Computation Reduction Strategies

This chapter explores strategies for reducing the computational bandwidth neces-

sary to perform the synthesis algorithms presented in the previous chapter. These strategies

focus on reducing the size of the models in order to reduce computational complexity. An

acceptable strategy must be incremental, allowing perceptual quality to be gracefully traded

for model size and synthesis execution time. Partials must be pruned from the models in a

way that minimizes the impact on human perception of the synthesized sound. To this end,

partials can be ranked by their perceptual salience, or impact on the quality of the sound.

They can then be removed in increasing order of salience to reduce size and computation.

A simple method for computing salience is the ranking and removal of partials

by increasing amplitude (i.e., the softest partials have the least salience and the loudest

partials the most). A measure of salience that better matches properties of the human

auditory system is the relative signal-to-mask ratio (SMR) [116]. SMR is computed for

pairs of partials, called the “masker” and “maskee,” by comparing their relative amplitudes

and frequencies. Amplitudes are compared on a logarithmic scale (i.e., dB) and frequencies

are compares according to a special scale, called the Bark scale, which corresponds to the

first 24 critical bands of hearing [137]. Each critical band, or Bark, is approximately 100Hz

49

Figure 4.1: SMR calculation using masking functions. SMR is calculated as the difference
between the height of the softer “maskee” partial and the height of the hat function at its
frequency. In the second case, where SMR < 0, the softer partial m is masked

wide below 500Hz, and the band sizes grow approximately exponentially above 500Hz.∗

The partial with the higher amplitude is designated the masker. Its masking function is

approximated with a “hat” function, whose slopes are 27 dB/Bark towards lower frequencies

and 15 dB/Bark towards higher frequencies [51], as illustrated in figure 4.1. The SMR is

then computed as the vertical distance between the amplitude of the maskee and the height

of the hat function at the maskee’s frequency. If the maskee is below the hat function

(i.e., negative SMR), it is masked and will not contribute to the sound as heard by human

listeners.

For each partial in a frame at time n, we compute its SMR with respect to every
∗The published Bark band edges are given in Hertz as 0, 100, 200, 300, 400, 510, 630, 770, 920, 1080,

1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500.

50

other partial in the model, and mark it as masked if at least one SMR is negative:

Find-Masked-Partials(n)
N ← number of partials in frame at time n
for i← 1 to N

do for j ← i to N
do if Aj(n) > Ai(n)

then if SMR(bark(fj(n)), Aj(n), bark(fi(n)), Ai(n)) < 0
then masked[i]← true
else if SMR(bark(fi(n)), Ai, bark(fj), Aj(n)) < 0

then masked[j]← true

This algorithm requires N(N −1)/2 SMR calculations per frame. This process is optimized

by doing no further calculations on a particular partial once a negative SMR has been seen

(i.e., if masked has already been marked true for the partial), resulting in a data-dependent

savings. We then proceed with reduction by first removing the masked partials with negative

SMRs and then the unmasked partials with positive SMRs in order of increasing amplitude.

For resonance models, which contain only one “time-independent” frame, a novel

optimization is defined for calculating salience based on SMR. Each masker partial M uses

a bandwidth-dependent hat function whose left and right slopes are (6πkM)27 dB/Bark

and (6πkM)27 dB/Bark, respectively. Quickly decaying partials with high bandwidth will

have steeper hat functions and reduced ability to mask other partials. The factor of 6π

is chosen from the definition of bandwidth (i.e., the filter response drops 6dB between the

center frequency and a frequency one bandwidth distance away) and mapping of bandwidth

to decay rate (i.e., decay rate = π · bandwidth).

4.1 Measuring effects of reductions

A group of experienced listeners (i.e., “semi-golden ears”) was invited to partici-

pate in a series of experiments to measure the effects of our reduction strategies on human

listeners. The panel included composers, performing musicians, musical applications re-

51

Score Relative Quality Comparison to original
5 Excellent Virtually indistinguishable
4 Good Just perceptibly different
3 Fair Degraded, but adequate
2 Poor Strongly degraded
1 Unsatisfactory Barely comparable

Table 4.1: Scoring system for listening experiments.

searchers and psychoacousticians. Listeners were presented with pairs of sounds with one

identified as the original and one identified as a possible reduction. Each listener was asked

to rate any perceived difference on a scale from 1 to 5. With these guidelines, panelists

were then free to listen to the two sounds in any order as many times as they wanted and

to assign scores as they saw fit. The scoring system, illustrated in table 4.1, was chosen to

correspond closely to both the 5-point Likert scale used in psychological surveys [73] and

the mean opinion scores (MOS) used in the audio/telephony community [2].

It should be noted that panelists were asked not to rate the absolute quality of the sounds

(as in mean opinion scores), but rather the comparative quality between the reductions and

the original. Early usability testing underscored the need to limit test pairs to comparisons

where one is known to be the original.

All listenings were conducted in the recording studio at CNMAT under uniform

listening conditions (e.g., speaker levels were calibrated to an 80dB level for a 1000Hz test

tone). The experiments were completely automated on a Windows-based PC and double

blind, with the investigator only acting as a passive observer and technical support.

Separate experiments were conducted for additive synthesis and resonance mod-

eling, and the results of those experiments are presented in the following two sections. In

each case, the results are presented as perceived quality versus model size.

52

Description Sound Qualities Partials Length
Suling flute Monophonic, harmonic 150 7.9 seconds
Berimbao Repeated notes with noisy attacks 200 3.5 seconds
James Brown polyphonic, multitimbral 250 5.9 seconds

Table 4.2: Sinusoidal-model listening examples.

4.1.1 Sinusoidal models

Three sinusoidal models were chosen, a melody played on a suling flute, a rhythm

played on a berimbao (a traditional Brazilian single-stringed instrument), and an excerpt

from a 1970 James Brown recording [16], as shown in table 4.2. The analyses of the

berimbao and James Brown were performed using the Loris analysis package [42] and the

suling was analyzed by the IRCAM Analysis/Synthesis team using their own software [104].

Reductions were made using both the amplitude and standard-masking strategies, yielding

8 reduced models for each strategy at 3/4, 1/2, 3/8, 1/4, 1/8, 1/16, 1/32 and 1/64 of the

original size.

Each listening session consisted of six trial groups representing each model and

reduction strategy. In each trial group, each of the 8 reduced models plus the original was

presented twice for a total of 18 randomly ordered listening examples per trial group, or

108 total examples. The six groups were presented in a random order in one sitting, with

strong encouragement to take breaks between groups.

A total of 9 listeners participated in the sinusoidal-model experiment, which was

conducted at CNMAT during September and October of 2000.

4.1.2 Resonance models

Three resonance models with different sound qualities were chosen, a marimba, a

plucked string bass, and a tam-tam, as listed in table 4.3. Reductions were made using both

the amplitude and bandwidth-dependent-masking strategies, yielding 10 reduced models for

53

Description Sound Qualities Partials Length
Marimba Harmonic, noisy attack, short decay 48 1 second
Plucked string bass Strongly harmonic, low frequencies, long decay 59 4 seconds
Tam-tam Inharmonic, long decay, “noisy” high frequencies 183 8 seconds

Table 4.3: Resonance-model listening examples.

each strategy at 3/4, 5/8, 1/2, 3/8, 1/4, 3/16, 1/8, 3/32, 1/16 and 1/32 of the original size.

All the models were treated as exponentially decaying sinusoidal models (i.e., the resonance

models were impulse driven).

Each listening session consisted of three trial groups representing one of the two

strategies (chosen randomly) for each of the models. In each trial group, each reduced

model was presented along with the original three times, plus three instances of the original

paired with itself, for a total of 33 randomly ordered listening examples per group, or 99

total.

For the resonance-model tests, which were conducted earlier than the sinusoidal-

model tests, panelists were allowed to assign a score between 1 and 8. These scores were

then converted to the 5-point scale described above for analysis. A total of 12 panelists

participated in this experiment, which was conducted at CNMAT during June and July of

2000.

4.2 Results

The results for the sinusoidal- and resonance-model experiments are presented

separately.

54

4.2.1 Sinusoidal Models

The results for the sinusoidal model experiments, expressed as average user rating

versus number of partials, are shown in figures 4.2, 4.3, and 4.4. We consider a mean score

of 4 or above to be high quality. All three models are rated consistently high with a steep

drop-off in perceptual quality for very reduced models. In each case, the steep decline in

quality can be attributed in part to the increase in the number of birth and death events in

the model, which occur because a partial may have a different salience in each frame. While

the birth and death of a partial with low salience has little effect on the sound output, the

effect for more salient partials is dramatic, with loud artifacts that make the sounds seem

even more degraded than if the partial was left out entirely.

Although the results exhibit a similar shape, the onset and rate of the decline

in quality does differ among the three examples. The suling model showed the steepest

drop, which occurs when the model is reduced below 9 partials (i.e., 1/16 of the original

size). The suling sound is strongly harmonic with most of the energy concentrated in five

partials, allowing very small reductions to retain most of the sound quality. More surprising

is how well the “breathy” quality of the sound is maintained at higher reductions, implying

that the noise energy is concentrated around a few frequencies. By contrast, the energy in

the spectrally richer berimbao model is spread over a larger number of partials, so more

of the sound is removed from the model at larger reductions. Moreover, the attack of

each note is characterized by strong transients. Removing the partials responsible for these

transients noticeably reduces the quality of the sound. The James Brown example includes

not only multiple notes but multiple instruments (i.e., voice, drums, electric guitar and

bass, and horns) with complex overlapping spectra. While the voice and horns remained

recognizable at higher reductions, the rhythm section instruments, and the percussion in

particular, lost most of their spectral richness. There was also more change in the spectrum

between successive frames because of the timbral variety and note changes. This caused

the reduction algorithm to choose different partials in successive frames and produce more

55

Figure 4.2: Results for reductions on the suling model. In each graph, the x axis is the
number of partials in each reduction and the y axis is the average user rating for each
reduction. Error bars represent standard deviation, and are removed from the comparison
graph for clarity.

56

Figure 4.3: Results for reductions on the berimbao model.

57

Figure 4.4: Results for reductions on the James Brown excerpt.

58

birth and death artifacts.

We can measure the “amount of sound removed” quantitatively as the ratio be-

tween the energies, or sum of amplitudes, in the reduced frame and the sum of amplitudes

in the original frame: ∑NR
i=1Ai(n)∑N
i=1Ai(n)

(4.1)

where N and NR are the number of partials in the original and reduced frames, respec-

tively, at time n. Using this formula, we see that when the berimbao begins to show strong

degradation at 50 partials, on average 68% of the energy remains in each frame, while ap-

proximately 50% of the energy remains in the James Brown example at 60 partials (the

point at which the quality begins to drop dramatically). We therefore conservatively esti-

mate that such models can be reduced to approximately two-thirds of their original energy

independent of the number of partials removed. The suling model retained 98% of its orig-

inal energy when reduced to just 5 partials, suggesting that this reduction would be rated

higher by listeners were it not for the artifacts introduced by frequent births and deaths.

Another significant result is the strong similarity in perception of the amplitude

and masking strategies. This result may seem at odds with the results of masking-based

strategies used in perceptual encoders for compression. However, it is important to note

that perceptual encoders remove masked frequencies from evenly-spaced samples in a full

spectrum (i.e., the result of a Fourier Transform), while the frequencies in sinusoidal models

are already distilled from full spectra via peak picking [110]. On average only 25% of the

partials in each model were masked

4.2.2 Resonance Models

The results of the resonance model experiments are shown in figures 4.5, 4.6, and

4.7. The marimba resonance model exhibits a steep drop in quality below 7 partials (i.e.,

less than 1/8 of the original model size), which is similar to results for the sinusoidal models.

However, the bass and tam-tam models show a more gradual decline in quality as partials

59

are removed. Both the bass and tam-tam models received scores below 4 when more than

half the partials were removed.

The marimba model is quite similar to the suling model in that relatively few par-

tials contribute most of the energy in the resonant, harmonic portion of the sound. Indeed,

only 7 partials contributed 93% of the initial energy (i.e., the sum of initial amplitudes).

Most remaining partials represent the extremely brief attack at the beginning of the sound.

Because no one partial has a strong spectral contribution to the attack, most can be re-

moved without a strong effect on the sound. By contrast, the bass and tam-tam models

are characterized by spectrally richer tones that decay over a longer period of time. In

particular, most of the partials in the bass model contribute to a single harmonic series

with additional partials as “beating pairs” for the harmonics below 900Hz. Removing the

harmonic or beating frequencies greatly reduces the sound quality. In the tam-tam model,

a large number of high-frequency partials contribute to the brightness and roughness of the

sound. However, they were more likely to be removed from the reductions because each

of these partials has a relatively low amplitude and each partial was likely to be masked

by another nearby partial. The removal of these partials gave the reductions below 50% a

“duller” timbre.

An interesting phenomenon observed by many listeners was a perceived change in

pitch between the original tam-tam and the significantly reduced versions, which sounded

almost a quarter-step lower. Pitch in complex inharmonic tones is often determined by

attempting to fit one or more harmonic series to the partials, resulting in weak or ambiguous

pitches [117]. Removing a partial may change the relative strength of the harmonic series

fit to the sound, causing the pitch to become more ambiguous or even shift.

As with the sinusoidal models, the results of amplitude and masking strategies

are remarkably similar. While the reduced models of the marimba were nearly identical

in both strategies, the equivalent-sized amplitude and masking of the bass and tam-tam

only had 80% and 50% of partials in common. Although nearly 50% of the partials in the

60

Figure 4.5: Results for reductions on the marimba model.

61

Figure 4.6: Results for reductions on the plucked string-bass model.

62

Figure 4.7: Results for reductions on the tam-tam model.

63

tam-tam were masked using the bandwidth-enhanced method, most of these partials appear

to have been masked by other low-amplitude partials, minimizing the difference in results

between the two strategies. A pilot run of the experiment used conventional masking based

on initial amplitudes (i.e., no decay-rate information), but the results showed even faster

degradation, particularly for the bass model because short partials were masking longer

partials with lower initial amplitudes.

4.3 Developing a Reduction Algorithm

Evaluating the reduction strategies requires weighing the perceived quality of re-

duced models against the computational cost that will be added to programs to perform the

reductions. Amplitude-based reduction requires that all partials be sorted by descending

amplitude, which is an θ(N logN) operation where N is the number of partials. Masking

requires O(N2) SMR calculations using the algorithm described at the beginning of this

chapter followed by O(N logN) operations to sort the unmasked partials. If few partials are

masked, both operations approach their asymptotic costs. Although we initially hypothe-

sized that the masking strategy would be too costly for the expected increase in reduction

quality, the fact that the amplitude and masking strategies showed nearly identical results

leads us to choose the amplitude-based reduction strategy.

The results suggest that at least half the partials can be pruned from sinusoidal

or resonance models and in some cases more partials can be pruned. However, the question

remains how many partials can be removed from a model? Requiring that users perform

similar experiments on all their sound models is not a practical solution. Moreover, syn-

thesis in real-time music applications is often based on the result of musician-controlled

transformations which can quickly and dramatically change the components of a model.

One method for estimating the reducibility of a model is the sum-of-amplitudes

ratio described in equation 4.1. As stated above, the results suggest that each frame of a

sinusoidal model can be reduced without significant degradation until the sum of amplitudes

64

in the reduced frame is less than three quarters of the sum of amplitudes in the original

frame. If this threshold is lowered to between one half and two thirds, the reduced models

exhibit moderate degradation (i.e., average listener scores between 3 and 4). We therefore

propose the following real-time sinusoidal-model reduction algorithm:

Reduce-Sinusoids(model, n)
frame← the frame in model at time n
N ← number of partials in frame
AN ←

∑N
i=1Ai(n), where Ai is the amplitude of the ith partial in frame

AR ← 0
reducedframe← {}
while AR < 3

4AN

do max← the largest partial remaining in the original frame
AR ← AR +Amax

Add partialmax to reducedframe
Remove max from the original frame

return reducedframe

This algorithm requires N steps to compute the total amplitude and at most N − 1 steps

to construct the reduced frame.

In order to improve the quality of aggressive reductions of sinusoidal models, the

issue of frequent births and deaths of partials must be addressed. Garcia and Pampin sug-

gest discarding sinusoidal tracks shorter than a specified minimum if their average SMR

measured over several frames is below a specified threshold [51]. In a real-time application

with mutable sounds, we can only look at tracks backward in time. Moreover, we do not

want to calculate averages over a large number of tracks because this approach increases

computational cost and reduces temporal accuracy (e.g., the effect of a dramatic change in

user input may be “smeared” over several frames in the reduced model because of averag-

ing). A heuristic that works surprisingly well on test sounds is to keep the partials in order

of increasing frequency. Most natural sounds have a spectrum in which the amplitudes

of spectral peaks decrease as frequency increases. For models of these sounds, Reduce-

Sinusoids still retains the partials with the strongest amplitudes but also retains a small

65

number of weaker partials of low frequency. Because these partials fluctuate in amplitude

between frames, they are sometimes pruned and sometimes maintained when frames are

sorted by amplitude before reduction. Preserving these “middle-strength” partials, partic-

ularly in the 500-5000Hz frequency range, increases the number of partials in the reduced

model, but reduces the perception of birth and death events. In addition, computation

time is saved by avoiding the sorting step. Some models, such as models of vocal sounds

in which the amplitude increases at higher frequencies (i.e., near formants) or sounds with

noisy or flat spectra, may lose salient partials using this heuristic, although they will still

benefit from the decrease in births and deaths. For this reason, sorting frames by amplitude

is retained as an option for the algorithm.

Births and deaths are not an issue for resonance models, although we do want

to modify the sinusoidal algorithm to include another temporal property, the decay rate.

The results of the resonance model experiments emphasized the importance of partials with

longer decay rates, particular in the bass and tam-tam models. Instead of using the initial

amplitude of a resonance partial, we can compute its theoretical amplitude contribution

over the duration of the sound as the ratio of initial amplitude to bandwidth:

Âi =
∫ ∞

t
Aie

−πkit =
Ai

πki
(4.2)

Substituting this formula for initial amplitude, we estimate that the sum of contributions

(i.e., Âi values) in a reduced model must be at least 90% of the original sum to maintain

high quality. Although this sounds like a conservative estimate, it actually corresponds to a

reduction by 7/8 for the marimba and by one half for the bass and tam-tam. The reduction

algorithm for resonance models is as follows:

Reduce-Resonances(model)
N ← number of partials in model
ÂN ←

∑N
i=1 Âi

Sort partials in model by decreasing values of contributions Âi

AR ← 0
reducedmodel← {}

66

while ÂR < 9
10ÂN

do max← the largest partial remaining in the original frame
ÂR ← ÂR + Âmax

Add partialmax to reducedmodel
Remove max from model

return reducedmodel

Note that the resonance-reduction algorithm is not a function of time and is employed only

when the input resonance model has been modified.

67

Chapter 5

Perceptual Scheduling

This chapter describes the perceptual scheduling framework for dynamically trad-

ing audio quality for reduced computational bandwidth to prevent QoS failures. Perceptual

scheduling is first described as a general algorithm that uses perceptual constraints. It is

then used in conjunction with the sinusoidal-model and resonance-model reduction strate-

gies developed in the previous chapter to reduce the computational demands of synthesis

algorithms. Run-time performance for several examples is measured to determine the effec-

tiveness of both the scheduling framework and reduction strategies.

5.1 Preventing QoS failures

Chapter 3 discussed a potential QoS failure in which the time to compute a sample

exceeds the sample period (i.e., about 20µs if the sampling rate 44100Hz). If this bound

is exceeded, the music synthesis system will be unable to maintain the required number of

samples in the audio output buffer. This buffer underflow may cause audible gaps or clicks

in the sound output and increase the latency and jitter between controller input and audio

output.

To prevent such failures, it is necessary to provide a feedback signal to the running

patch, as illustrated in figure 5.1. The feedback can then be used by transforms in the patch

68

Target latency is maintained. No feedback is necessary.

Output buffer is dangerously low. Feedback required to reduce computation.

Figure 5.1: When the real-time guarantees are satisfied, the perceptual scheduler does
nothing. When the process fails to meet the guarantees, the perceptual scheduler provides
feedback to the program to reduce its computation.

to reduce their computational requirements and lower the execution time below the real-time

bound. Transforms that reduce their computational requirements must do so in a way that

maintains the quality of the sound output as the execution time decreases. The problem of

balancing sound quality and computational bandwidth is called perceptual scheduling.

69

5.2 Generic Perceptual Scheduling Problem

Bounded execution time is maintained in perceptual scheduling by dynamically

reducing the computational requirements of certain transforms, called reducible transforms

when the measured execution time exceeds the bound. Reducible transforms generate sound

models or synthesize waveform representations. Given a set of reducible transforms R, the

measured per-sample execution time E and an upper bound on execution time Emax, the

scheduler executes the following algorithm once per epoch:

Perceptual-Scheduler(E,Emax, R)
if E > Emax

then for each r ∈ R
do calculate c(r),the estimated computation saved by reducing r

find R′ ⊂ R such that E −
∑

r∈R′ c(r) ≤ Emax

for each r ∈ R′

do switch r to reduced-computation mode
else for each r ∈ R

do if r is executing in reduced-computation mode
then allow r to incrementally increase computation

During the next epoch, all reducible transforms in the selected subset R′ will be executed

in reduced-computation mode. If the measured execution time is less than the bound, the

algorithm allows reduced transforms to increase the computation incrementally over several

epochs so that they do not become “stuck” with a computational bandwidth that no longer

maintains sound quality as the model changes over time. If the gradual increases cause the

execution time to once again exceed the bound, the algorithm will select a new subset of

transforms to reduce.

It should be noted that the computational savings estimate c(r) may not reflect the

computation saved only by transform r, but also the computation saved by transforms that

depend on the result of r. For example, reducing the size of the output from a transform that

generates a model (or reads a model from disk) will reduce the computational bandwidth

of a transform that synthesizes a waveform representation from the model. In fact, the

70

process of reducing the model size may actually increase the computation required by the

generating transform, but if there is a greater decrease in the computation required for

synthesis, the net computational bandwidth will be reduced.

There are several possible strategies for choosing R′. One is to find a subset that

minimizes the amount of computational reduction but still brings the total execution time

below the bound. The problem can be stated as follows:

Minimize
∑
r∈R′

c(r)

subject to E −
∑
r∈R′

c(r) ≤ Emax

This optimization can be solved using 0-1 integer programming. For each transform r,

define a variable sr that is 1 if r ∈ R′ and 0 if r 6∈ R′. The problem can then be restated:

Minimize
∑
r∈R

c(r)sr

subject to E −
∑
r∈R

c(r)sr ≤ Emax

An exhaustive search of the problem space takes O(2|R|) steps. However, if a particular

subset S fails the constraint, then all subsets of S will also fail, which means 2|S| elements

can be pruned from the problem space. In the corresponding integer programming problem,

if a particular solution fails, switching any of the variables in the solution from 1 to 0 will

also fail. If few subsets satisfy the constraint then the size of problem space will be greatly

reduced by pruning. In fact, if the constraint fails for the entire set R, the algorithm fails

immediately. However, if many small subsets satisfy the constraint, the algorithm must

search them all to find the minimum.

Another approach to pruning the search space is to grow the search space incre-

mentally. Starting with a space S containing a single transform {r}, transforms are added

until a subset is found that satisfies the constraint.

71

Find-Reduced-Subset(S)
result← Test-Subsets(S)
if result 6= fail

then return result
else if there exists a reducible transform r 6∈ S

then return Find-Reduced-Subset(S ∪ r)
else return fail

Test-Subsets(S)
if E −

∑
r∈R′ c(r) ≤ Emax

then for each S′ ⊂ S
do result← Test-Subsets(S′)

if result 6= fail
then return result

return S
else return fail

Find-Reduced-Subset is initially called with a single transform. This algorithm has a

worst-case running time of O(2|R|) and may not find the optimal subset (i.e., the subset with

the smallest reduction in computational bandwidth). However, it does favor smaller subsets

and only requires computational-savings estimates for the transforms that are searched

before finding a solution. Solutions with fewer transforms are usually better because the

model-reduction algorithms can be expensive. Reducing the number of estimates required

is significant because estimating the savings from a transform may also require an expensive

analysis of its sound model. If no solution exists, the algorithm will fail in O(|R|) steps.

Each step of Find-Reduced-Subset exhaustively searches all subsets of S. If

only S and the most recently added transform are tested, a solution can be found in O(|R|)

steps:

Build-Reduced-Subset-Linear(R′)
if E −

∑
r∈R′ c(r) ≤ Emax

then return R′

else if there exists a reducible transform r 6∈ R′

then if E − c(r) ≤ Emax

then return {r}
else return Build-Reduced-Subset-Linear(R′ ∪ {r})

else return fail

72

This algorithm will find a solution in O(|R|) steps if it exists and fail after exactly 2|R| − 1

steps otherwise. It will favor a solution using only one transform if it exists. However, it

ignores most of the intermediate-sized subsets. It may recommend that all the transforms

be reduced even if a smaller non-single subset exists that satisfies the constraints. Despite

returning suboptimal results in some situations, this algorithm is preferred for real-time

use because bounded execution time is more important than minimal execution time. An

optimal solution may result in less computation within an epoch, but the more complex

algorithm will increase the computation at epoch boundaries, exacerbating the potential

QoS failures that triggered the scheduling algorithm in the first place.

5.2.1 Choosing the epoch length

The choice for a scheduling epoch must balance the cost of the scheduling algorithm

with the need for responsiveness. If the epoch is too long, the algorithm will not be able

to respond to changes in the sound models used by reducible transforms. Such changes

may affect the computational bandwidth required to maintain sound quality and choice of

a reducible subset. If the epoch is too short, the overhead of scheduling will be greater than

the computation saved from the reductions.

For music based on note events (i.e., most traditional and contemporary music),

the sound model may be updated when a new note begins. The frequencies and amplitudes

can be scaled according to the desired pitch and loudness of the new note. The timbre

of “physically-inspired” models may also be adjusted to reflect natural timbral changes

between notes. Iyer reports temporal resolutions of approximately 300-800ms for beats,

75-200ms for subdivisions of beats (e.g., sixteenth notes) and ±30ms for expressive-timing

deviations between the prescribed length of a note and its actual length (i.e., a sixteenth

note at a tempo of 120bps should last 125ms, but in an expressive performance may be

as long as 155ms or as short as 95ms depending on its musical context) [57]. A study by

73

Clarke reports a sensitivity of 20ms to simple isochronous sequences (e.g., evenly-spaced

clicks), although this sensitivity dropped to 50ms in melodic examples [27]. Sensitivity also

decreases at the beginning and end of phrases in traditional Western music [98] and during

temporal jitter, or “slop” in rhythmic patters [58].

Timbre can also change within a note event (e.g., bowing on a string instrument or

adjusting breath and embouchure on a wind instrument), and some electronic works eschew

note events in favor of continuous timbral changes (e.g., Wessel’s Antony and Chowning’s

early frequency-modulation compositions [24]). While the timing sensitivity of 10 ± 1ms

reported in chapter 3 applies to a performer using continuous control, the listener has very

little ability to detect the exact timing of changes within a continuous motion [99]. It should

also be noted that a computationally reduced timbre is not necessarily “frozen” during an

epoch. The timbre can change at the reactive resolution of the system (i.e., the clock period

described in chapter 3), but the computational bandwidth must remain within the reduced

bounds set by the scheduler.

With these considerations in mind, the default epoch of the perceptual scheduler is

set at 30ms, with the option of increasing or decreasing the length in individual applications.

5.3 Additive Synthesis

For applications using additive synthesis, perceptual scheduling minimizes the

number of partials synthesized with respect to constraints that preserve the quality of

the sounds being modeled. Typically, one reducible transform is required per model being

used. The computational savings estimate for each model is the number of partials to be

pruned multiplied by the per-partial computational cost of the synthesis algorithm. Using

the per-partial cost of 0.053µs per sample per partial for oscillator-based additive synthesis

(i.e., as reported in section 3.1.1), the estimated computational savings after pruning 100

partials from a model is 5.3µs per sample. If TDAS is used for additive synthesis, the

estimated savings is 1.6µs per sample (i.e., using the cost of 0.0016µs per sample per partial

74

reported in section 3.1.2).

The following subsections describe implementation of a reducible transform that

use the sinusoidal-model reduction strategy described in chapter 4, evaluate its performance

on different models, and propose the use of customized reducible transforms that have better

performance given additional knowledge about sound models.

5.3.1 Implementation

The sinusoidal-model reduction algorithm Reduce-Sinusoids developed in chap-

ter 4 has been incorporated into the OSW transform sdif::ToReducedSinusoids. ToReducedSi-

nusoids is a modification of the transform sdif::ToSinusoids that applies the reduction algo-

rithm to models as they are read from SDIF files. The output of this transform can then

be used for synthesis, as illustrated in 5.2a. For models that are not read from SDIF files,

but generated algorithmically (e.g., the band-limited sawtooth model used in chapter 3),

an additional transform ReduceSinusoids is included that applies the reduction algorithm to

a sinusoidal model input. An example using ReduceSinusoids is shown in figure 5.2b.

Synthesis servers that use the reduction algorithms must also include the transform

PerceptualScheduler. This “global transform” interacts with the system to implement the

perceptual scheduling algorithm. It is not connected to other transforms in the patch

because it does not directly process any signal or control data.

5.3.2 Performance

The real-time performance of the reduction strategies was measured on several

sound models. In addition to the performance of models from stored SDIF files that used

sdif::ToReducedSinusoids for reduction, the performance of a 100Hz band-limited sawtooth

model frequency-modulated by a 4Hz oscillator (i.e., the “LFO” function found in many

analog synthesizers) using ReduceSinusoids was also measured. Measurements using both si-

nusoidal oscillators and TDAS were taken, first using no perceptual scheduling or reductions

75

a)

b)

Figure 5.2: Synthesis servers with reducible transforms. a) sdif::ToReducedSinusoids reduces
a model read from the SDIF buffer mymodel before it is synthesized. b) ReduceSinusoids is
used to reduce the sawtooth model generated by AnalogVCO. In both examples, the global
transform PerceptualScheduler manages the reducible transforms.

76

Figure 5.3: Performance comparison oscillator-based synthesis on full and reduced versions
of the “suling” model. The per-sample CPU time is calculated each epoch over the duration
of the model.

and then with the scheduling and reduction algorithms engaged. Figure 5.3 compares CPU

usage, measured in microseconds per sample, over time for oscillator-based synthesis (i.e.,

AddSynth) of the full and reduced versions of the suling model used in chapter 4. Figure

5.4 compares synthesis of full and reduced versions of the suling model using TDAS (i.e.,

AddByIFFT). In both cases, the scheduling and reduction algorithms consistently reduced

the CPU time over the entire synthesis process. Equally important are the tighter upper

and lower bounds on CPU usage when the scheduling and reduction algorithms are used.

The reduced streams are bounded, while CPU usage in the full streams grows. The spikes

at 0.5 seconds in the reduced streams 0.05 seconds in the full streams are startup anomalies

77

Figure 5.4: Performance comparison of TDAS on the suling model.

that are model-dependent. CPU times are bounded between 2 and 2.5 microseconds per

sample when AddSynth is used, and between 2.5 and 2.7 microseconds per sample when

AddByIFFT was used. The CPU times are more varied when perceptual scheduling was not

used. The wider variation can be attributed mostly to the change in the number of partials

in the full model over time. Thus, the dependency of execution time on data size has been

reduced.

Similar results were observed for other models. Figure 5.5 shows summary results

for the suling model, the modulated-sawtooth model, and three additional models based on

a phrase sung by Khyal singer Shafqat Ali Khan [129], a brief passage performed by saxo-

phonist Steve Coleman, and a recording of an “angry cat” used in the analysis-synthesis

78

Figure 5.5: Comparison of average CPU usage between synthesis of full and reduced versions
of sinusoidal models. The upper graph shows the results when AddSynth is used while the
lower graph represents the results when AddByIFFT is used.

79

Figure 5.6: Comparison of generic and customized reduction strategies for a frequency-
modulated 100Hz band-limited sawtooth model. The graph displays the average CPU time
for the full model and equal-sized reductions using both reduction strategies. Results using
both synthesis algorithms are included.

panel at ICMC 2000 [133]. Most of the models show a strong decrease in computational

bandwidth because most of the energy is concentrated in a few partials. A greater de-

crease in computation is observed for larger models because the overhead of the synthesis,

scheduling and reduction algorithms is constant and therefore a smaller percentage of the

total per-sample CPU time.

5.3.3 Customized Reduction Strategies

More efficient reduction strategies can be developed given additional knowledge

about the sound models. For example, the band-limited sawtooth model contains sinusoids

80

with 1f, 2f, 3f, . . . , Nf and amplitudes 1, 1/2, 1/3, . . . , 1/N , where f is the pitch and N <

S/2f . The sum of amplitudes in the model is the harmonic series of length N :

HN =
N∑

i=1

1
i
≈ ln(N) + γ (5.1)

where γ ≈ 0.5772156649. Using the heuristic from chapter 4 that the sum of amplitudes in

the reduced model should be at least three quarters of the sum of amplitudes in the original

model, we can solve for NR, the number of partials in the reduced model:

lnNR + γ ≈ 3
4
(lnN + γ) (5.2)

NR = be
3
4
(ln N+γ) − γc (5.3)

Substituting bS/2Rc = b44100/(2 · 100)c = 220 for N , the reduced 100Hz sawtooth model

used in the previous section should contain 49 partials, which is also the number of partials

remaining when the generic reduction strategy Reduce-Sinusoids is used. However, unlike

the generic reduction strategy, which requires θ(N) operations to determine the size of the

reduced model, this strategy computes the size in constant time. Moreover, the size can be

computed without first examining the partials in the model, so the reduced model can be

generated directly.

Although there is a significant reduction in complexity, a comparison of CPU

usage by the generic and customized strategies shows a decrease of about one microsecond

per sample when using the customized strategy with either AddSynth or AddByIFFT, as

illustrated in 5.6. A more complex customized reduction strategy will be evaluated on a

musical example in chapter 6.

5.4 Resonance Modeling

Perceptual scheduling of resonance models minimizes the number of partials syn-

thesized, with one reducible transform per resonance model and a computational savings

estimate proportional to the number of partials pruned from each model. Using the per-

partial cost of 0.047µs per sample per partial for resonant filterbank synthesis, the estimated

81

Figure 5.7: A reducible resonance-model server. A model read from the SDIF buffer my-
model is reduced using ReduceResonances when computation reduction is required. The
resonant filterbank Resonators is updated whenever ReduceResonances changes the size the
model.

computational savings after pruning 100 partials is 4.7µs per sample. The remainder of the

section describes the implementation of a reducible transform for resonance models and

evaluates in performance.

5.4.1 Implementation

OSW includes a transform ReduceResonances that applies the reduction algorithm

Reduce-Resonances to resonance-model representations. Because resonance models are

constant over time and they are represented in SDIF by a single frame of constants that

is read once before the model is used, no significant performance is gained by a separate

82

transform that reduces a model as it is read from an SDIF representation. However, this

observation does not mean the reduction algorithm is applied only once to the model when

it is read. The reduction algorithm must be applied each scheduling epoch because the

need for reduction may vary as the performance of other transforms changes. A patch using

ReduceResonances is illustrated in figure 5.7. Once again, a PerceptualScheduler transform

is required to use the reduction algorithms.

To reduce computation in resonant filterbank synthesis, it is also necessary to

remove filters from the bank that correspond to pruned partials in the reduced model.

Otherwise the “orphaned” filters will continue to operate and no computation is saved.

The Resonators transform was modified to expand and contract the filterbank dynamically

as the size of the model changes.

5.4.2 Performance

The performance of the resonance-model reduction strategy was measured on the

marimba, tam-tam and bass models used in chapter 4 as well as a model of a low A (i.e.,

55Hz) on a piano. In each test, an impulse was sent to Resonators once every second

for 10 seconds. The CPU usage over time is plotted for the tam-tam models in figure

5.8. A performance summary for all four models is provided in figure 5.9. Similar to the

sinusoidal-model results, all examples consistently used less CPU time with tighter bounds

when the scheduling and reduction algorithms were applied. In fact, the piano model,

which contained 697 partials, required an average of 34.1 microseconds of CPU time per

sample and therefore did not run in real time on the reference machine. When the reduction

algorithm was applied, the piano model required an average of only 11.3 microseconds per

sample, making its synthesis possible in real time.

The performance of the resonance-model reduction strategy was only measured

with impulse excitations. As discussed in chapter 3, the computational complexity of a

resonant filterbank is not dependent on the excitation signal. However, it is not clear

83

Figure 5.8: Performance comparison of full and reduced versions of the tam-tam model.
The per-sample CPU time is calculated each over a 10 second period.

that the reduction strategy used for impulse-driven models will work for models with other

excitation signals. The design and evaluation of reduction strategies for resonant filterbanks

with non-impulse excitations are left as open questions for future research.

5.5 Discussion

The performance evaluations presented in this chapter show that perceptual schedul-

ing combined with reduction strategies is effective at reducing the computational require-

ments for synthesizing individual sinusoidal and resonance models. A perceptual scheduling

system maintains strongly bounded execution times, which are necessary to maintain real-

time QoS guarantees. The next chapter will evaluate the performance of a perceptual

84

Figure 5.9: Comparison of average CPU usage between synthesis of full and reduced versions
of resonance models.

scheduling system on multiple models in larger musical examples.

In larger examples with more than one model, the option exists to combine all

the models and apply the appropriate reduction strategy once on the aggregate model.

This approach increases the likelihood of finding an optimal reduction that prunes partials

according to their salience in the aggregate model. However, it is unclear whether additional

partials can be pruned from the aggregate without using the O(N2) masking strategy, where

N is the total number of partials in all of the models. Per-voice reductions also offer more

flexibility, including the labeling of some models as “non-reducible” and selection of different

reduction strategies for different models.

85

Chapter 6

Evaluation of Perceptually

Scheduled Music

This chapter describes the evaluation of perceptual scheduling on larger musical

examples. The evaluation includes analyses of run-time performance (i.e. usage of CPU

time) and subjective rating by human listeners in a controlled experiment.

Table 6.1 lists the musical examples used in the evaluation. The table includes

the synthesis algorithms used, the number of partials in the sound representations and the

number of “voices” (i.e., representations synthesized simultaneously) used in each example.

The musical examples were chosen to use different algorithms (e.g., oscillators, TDAS and

resonant filterbanks) and numbers of reducible transforms in order to evaluate perceptual

scheduling under different computational requirements. Additionally, the musical examples

are drawn from a wide range of musical sources and disciplines. The Bach fugue and the

excerpts from Constellation use a traditional note-based performance model in which the

synthesis models are scaled and resynthesized for each note event. On the other hand,

the Tibetan-recording improvisation and Antony employ continuous control of the models

over the duration of the music. There is no true separation into discrete “notes.” While

the two note-based works are specified in scores, the works using continuous control are

86

Name / Description Duration Synthesis Partials Voices
Fugue in B[minor, J.S. Bach 34s TDAS 650 5
Improvisation on Tibetan Recording 28s Oscillators 202 2
Antony, D. Wessel 45s TDAS 600 3
Constellation, R.B. Smith (1) 6s Resonances 288 6
Constellation, R.B. Smith (2) 21s Resonances 273 2

Table 6.1: Summary of musical examples, with durations, synthesis algorithms, number of
partials and number of voices.

improvised within specified constraints. In one example, the twentieth-century technique

musique concréte, or music from recorded material, is applied to traditional Tibetan vocal

music.

This chapter is organized as follows. Section 6.1 describes the experimental meth-

ods used in the listening tests. The results of both performance analysis and listener evalu-

ation are then presented separately for each of the musical examples in sections 6.2 through

6.5. Section 6.6 concludes the chapter with a more general discussion of the results.

6.1 Experimental Methods

A group of 15 experienced listeners participated in an experiment that measured

the effects of perceptual scheduling on sound quality. Listeners were presented with pairs

of sounds in which one was identified as the original and one as the reduced-computation

version. Similar to the experiments described in chapter 4, the listeners were asked to rate

any perceived difference on a scale from 1 to 5, as illustrated in table 6.2.

Listeners were presented versions of each sound example with full computation,

maximally reduced computation (i.e., performing all allowed reductions within the con-

straints set by the algorithms) and a partially reduced computation (i.e., a subset of the re-

ductions were performed to meet a specified upper bound on CPU time). The exception was

the Bach fugue, for which only two versions with full computation and fully reduced compu-

87

Score Relative Quality Comparison to original
5 Excellent Virtually indistinguishable
4 Good Just perceptibly different
3 Fair Degraded, but adequate
2 Poor Strongly degraded
1 Unsatisfactory Barely comparable

Table 6.2: Scoring system for listening experiments. The scoring system is the same as used
in chapter 4.

tation were presented. Each version was presented to the listener with the full-computation

version, for a total of 14 example pairs. For each example, the full-computation version

was presented once with itself as a control. The 14 example pairs were then presented to

the user in a random order. The panelists were free to listen to the two sound samples

in each pair in any order as many times as they wanted. Additionally, because the sound

samples were longer than in the previous experiments (e.g., 34 seconds and 45 seconds for

the Bach-fugue and Antony examples, respectively), listeners were given a “scrub” control

to fast-forward and rewind to arbitrary points within the sound sample after listening to it

at least once from start to finish. This extra degree of freedom allowed listeners to focus on

brief segments in which they heard perceived differences.

The experiment was conducted at CNMAT during the spring of 2001. All sessions

occurred in the recording studio under uniform listening conditions (e.g., speaker levels were

calibrated to an 80dB level for a 1000Hz test tone), and used an automated interface similar

to the previous experiments, as described in section 4.1.

Because the reduction strategies were designed to minimize degradation, the per-

ceptual differences between original and reduced sound examples were more subtle than

those in the experiments reported in chapter 4. After completing the experiment, listeners

were invited to comment on the experiences. Feedback from listeners revealed two distinct

approaches used by listeners to rate the quality. The majority of listeners considered the

examples in their entirety, using readily perceived artifacts as indicators of degraded qual-

88

ity. When such artifacts were observed, they used the scrub control to focus on location of

those artifacts. Other listeners assumed that artifacts must exist and used the scrub control

to locate artifacts that they did not hear when listening to the full sample. Although this

listening strategy is equally valid given the guidelines of the experiment, listeners who used

it usually gave lower scores to the examples that included reductions. (In fact, they were

also more likely to give lower scores to examples that did not use any reductions!)

In addition to the listening experiment, the musical examples were evaluated by

an outside panel of experts in sound analysis and synthesis, including Professors Lippold

Haken from the University of Illinois and Kelly Fitz from the University of Washington.

Their feedback was used to guide the analysis of results.

6.2 Example 1: Fugue in B[minor, J. S. Bach (BWV 867)

In the first musical example, measures 10 through 25 of Fugue 22 in B[minor

(BWV.867) from the Well Tempered Clavier, Book I by Johann Sabastian Bach was per-

formed using a sinusoidal model of a harpsichord [12]. This particular fugue was chosen

because it uses five voices, which is an unusually large number for a fugue. The excerpt

begins as the third, fourth and fifth statements of the subject enter, as illustrated in figure

6.1, and concludes at a major cadence.

A MIDI sequence from the Classical MIDI Archive at http://www.prs.net was

used as the “performer” [100]. The notes from the MIDI file were separated by fugue voice

and sent to separate subpatches, each of which contained a separate instance of the harp-

sichord model and AddByIFFT synthesis transform. When one of the subpatches received

a new pitch value from the MIDI file via its pitch inlet, the harpsichord model was scaled

to the new pitch and restarted from the beginning by setting the connected time machine

to zero. The synthesized waveform output from the AddByIFFT transform was mixed with

the other voices.

The harpsichord model used in each voice contained 130 partials, so 650 partials

89

Figure 6.1: Measures 10 through 16 of Fugue 22 from the Well Tempered Clavier. The
voices are shown on separate staves for clarity.

90

Figure 6.2: CPU usage during full and reduced performances of the Fugue 22 excerpt.
Because the two streams overlap frequently, they are displayed on separate graphs. More
computation is used when more notes are played simultaneously. However, the reduced
version mostly remains below the real-time constraint of 20µs per sample.

91

were used by all five voices. In addition to the computation required to synthesize the par-

tials using five instances of AddByIFFT, an additional 650 frequency-scaling operations per

clock period were required to assign the correct pitches to the models. Without perceptual

scheduling enabled, the patch did not run in real time on the reference machine, as illus-

trated in figure 6.2. The large fluctuations in CPU usage over time apparent in figure 6.2

correspond to the changing number of voices active in the music (i.e., the texture). When

notes sound simultaneously in several voices, more computation is required. For example,

the general increase over the first twelve seconds (i.e., the increasing height of the plateaus

in the graph) corresponds the entrances of the fourth and fifth voices in measures 12 and 15,

respectively. When perceptual scheduling was enabled and the computational bandwidth

was bounded at 20µs per sample (i.e., 100% CPU usage on the reference machine), the

computation saved by reducing all five voices allowed the patch to run in real time. The

computation still changes with the texture of the music (i.e., more computation when more

voices sound simultaneously), but mostly within the specified constraints.

The results of listener evaluations of the fugue performance under full-computation

and reduced-computation conditions are illustrated in figure 6.3. The position along the

horizontal axis represents the average CPU times of the full and reduced performances,

which were 22µs/sample and 17µs/sample, respectively. The large error bars along the

CPU-time axis represent the large changes in CPU usage due to musical texture, as de-

scribed above. The vertical axis represents the average listener scores on the 5-to-1 scale

described in section 6.1. The harpsichord model was similar to the single-tone models used

in the experiments described in chapter 4. Because the reduction strategies were refined

using single-tone models, we expected the listener scores to remain high (i.e., between four

and five). Although listeners observed some degradation, particularly during the attack

transients of each note, most gave the reduced sample a score of three or four, depending

on how serious they considered the artifacts. Fitz observed a small but noticeable decrease

in brightness and spectral roughness in addition to the artifacts in the attack transients,

92

Figure 6.3: Quality versus average CPU time in Fugue 22. Quality is reported as the
mean listener scores between 1 and 5. The original (i.e., full-computation) performance is
represented by the round point, while the reduced-computation performance is represented
by the square point. The horizontal error bars represent the deviation in CPU time over
the duration of the example. The vertical error bars represent the standard deviation in
listener scores.

but nonetheless thought the sample deserved a score of four [41]. Haken considered the

artifacts more serious, and recommended a score of two [54]. Some listeners considered

both the original and the the reduced samples degraded and gave them consistently lower

scores. Additionally, listeners who had extensive experience with traditional Western music

were expected to be more critical of this example. However, the mean listener-score remains

close to four, and we consider this example a successful instance of graceful computational

reduction.

93

6.3 Example 2: Time-scale Improvisation on Recording of

Tibetan Singing

In the previous example, a model of an acoustic instrument was used to realize

the notes of a piece of music originally intended for the instrument being modeled. This

example uses sinusoidal modeling for music that could not have been realized acoustically.

As described in chapter 2, sinusoidal models can be used to produce new music by dynam-

ically changing the time function as the model is synthesized. In this example, a sinusoidal

model made from a recording of Tibetan singer Tsering Wangmo in 1996 was used. The

model was synthesized simultaneously on two separate voices using AddSynth transforms

for oscillator-based additive synthesis and output over separate audio channels, as illus-

trated in figure 6.4. Although two synthesizers were used, both shared a single SDIFBuffer

resource for the model. One of the two models was connected to a TimeMachine transform,

which was used to dynamically scale the time function of the sinusoidal model, allowing it

to be sped up, slowed down or performed backwards according to user input. The original

and time-scaled versions of the model were synthesized simultaneously, thus creating an

improvised “counterpoint” of the original against its time-scaled variation. Because the Ti-

betan passage uses a pentatonic scale, any timed-scaled or retrograde variations still sound

consonant when played against the original.

The patch was performed by volunteer improvisors using a mouse to vary the rate

of the time machine between -2 and 3 (i.e., backwards at twice the speed and forwards at

three times the speed). All mouse-controlled rate changes were captured as time-stamped

events that could be played back later. One of the captured improvisations was selected for

the computational and listener-evaluation study.

The CPU usage of the full-computation and two reduced-computation perfor-

mances of the selected improvisation is illustrated in figure 6.5. In the fully reduced version,

the upper bound was set at a low level so that the scheduler would reduce both voices at

94

Figure 6.4: OSW patch for Tibetan-recording improvisation. The two synthesizers share a
single SDIFBuffer resource containing the sinusoidal model, but have separate virtual time
sources and output samples to separate audio channels. The synthesizer on the right is
connected to a time machine for user control of virtual time.

all times. In the partial reduction, the upper bound was set at 10µs per sample. The

sections of the partially reduced stream that have greater average CPU times than the fully

reduced stream represent epochs during which only one of the two voices was reduced in

order to meet the upper bound. The spikes represent frames of the model from which few

partials were reduced and less computation saved. Such frames, which are associated with

triansients or low-amplitude sections of the model, occur at infrequent intervals when the

model is played at full speed from beginning to end, but can be stretched out over longer

periods when virtual time is slowed down. More computation is also required when virtual

time is sped up because birth and death events must be handled with greater frequency.

95

Figure 6.5: CPU usage during full and reduced performances of the Tibetan-recording
improvisation.

Changes in virtual time rate also require that the SDIF frames not be read in ascending

order, but rather the entire model searched to find the closest match in time, which in-

creases the computation necessary to synthesize a frame. In fact, the increases in CPU time

in the intervals between 16 and 17 seconds and between 21 and 22 seconds correspond to

periods in the improvisation where the virtual time rate is double the physical time rate or

the rate is changing rapidly. Additionally, the 10µs/sample upper bound of the partially

reduced version was exceeded during the interval between 20 and 22 seconds. This suggests

that the computational cost, which does not account for the frame search algorithm, was

underestimated by the perceptual scheduling algorithm.

As illustrated in figure 6.6, this example fared very poorly under perceptual

96

Figure 6.6: Quality versus average CPU time in the Tibetan-recording improvisation. Qual-
ity is reported as mean listener scores between 1 and 5. The full-computation performance
is represented by the round point, while the triangular and square points represent the par-
tially reduced and fully reduced performances, respectively. The reduced examples received
poor scores from listeners.

scheduling. All listeners gave the reduced samples scores of three or less, indicating that

the samples were still recognizable but severely degraded when compared to the original.

Most of the degradation can be attributed to birth and death artifacts, particularly dur-

ing transitions and vibrato. During these events, the amplitudes of the partials change

rapidly between successive frames, so the sizes of the reduced models change rapidly as

well. While some birth and death artifacts are masked in models with broader spectra

and more noise-like features, such as the James Brown example, little masking of artifacts

occurs in the more harmonic vocal models. Haken’s reduction strategy, which uses a global

97

maximum amplitude value for each partial instead of different amplitude values on succes-

sive frames, might be expected to do better on this example [53]. Similarly, Garcia and

Pampin’s strategy that prunes short partials might avoid selection of shorter partials in the

reduced model [51]. However, as stated in section 4.3, these strategies do not account for

users’ changing the model in real time, as is done in this example. Fitz’s reaction to the

reduced samples was that they sounded like the results of a sinusoidal analysis where the

user erroneously leaves the analysis parameters (e.g., spectral resolution, window size and

minimum pitch) unchanged from their defaults [41]. Building on this observation, the poor

results in this example suggest that one reduction strategy cannot fit all MQ-style additive

synthesis models. Additional reduction strategies will need to be developed with heuristics

for different classes of sinusoidal models, such as human voices. However, like the generic

strategy for single-tone models, a heuristic strategy should not rely on knowledge about the

future of a model. In the following example, such a customized strategy will be evaluated.

Another option is adding a parameter to increase the number of partials retained,

sacrificing some computational savings for increased quality. Retaining more partials de-

creases the likelihood of birth and death artifacts. Although this solution allows a single

parameterized algorithm to be used with more models, the added degree of freedom can

make its integration into real musical applications more difficult. As with the parameterized

analysis/synthesis algorithms, use will require additional expertise.

6.4 Example 3: Antony, David Wessel

This example is based on Antony, originally composed by David Wessel in 1977

[127] and realized on a digital oscillator bank designed at IRCAM by G. DiGiugno called

the 4A [37]. This version of Antony uses three voices containing 200 sinusoids each. It be-

gins with the sinusoids in each voice distributed uniformly on a log-frequency scale between

32.5Hz and 5kHz. The piece then unfolds over a series of epochs during which the sinusoids

in each voice “migrate” to frequency regions specified by the user in real time according to

98

the following algorithm:

Antony-Voice-Migration(flo, fhi, rate)
period← 1/rate
for i← 1 to N

do sinusoids[i].frequency = flo + random() ∗ (fhi − flo)
sinusoids[i].amplitude = ampscale[sinusoids[i].frequency]
Wait period seconds

where sinusoids is the model, N is number of sinusoids in the model (i.e., 200), rate is the

migration rate, and flo and fhi are the new upper and lower frequency bounds, respectively.

When the algorithm ends, all the sinusoids have a random frequency within the new bounds.

The algorithm executes concurrently for all voices during an epoch. The epoch ends after

the algorithms terminates. At the beginning of the next epoch, the algorithms are restarted

with the new values of flo, fhi and rate for each voice. The array ampscale is a table that

scales the amplitude of each sinusoid as a function of its frequency. It uses a quadratic

function to model the equal-loudness contours that normalize perceived loudness across

different frequency bands [1].

The effect of synthesizing audio from this process is, in the words of the composer,

motion “between vague and undifferentiated clusters and clear pitches.” When the bounds

are far apart, the effect is a dense, noise-like sound with no determinate pitch. If the

bandwidth (i.e., the distance between the upper and lower frequency bounds) remains less

than 1kHz, the sound is perceived as a noise band. However, if the bandwidth grows even

larger, the frequencies of the individual partials become more discernable, creating an effect

that one listener described as “metallic.” When the bandwidth becomes very small (e.g.

less than 10Hz), a whistle-like tone with a more discernable pitch emerges.

A custom OSW transform called AntonyVoice was created to implement the Antony-

Voice-Migration algorithm. The transform has inlets for the upper and lower frequency

bounds, and the migration rate, and outputs a sinusoidal model. The sinusoidal-model out-

99

Figure 6.7: OSW patch for Antony. The AntonyVoice transforms output sinusoidal
models that change according to the migration algorithm. Wires connect from the three
AntonyVoice transforms to the Multitrigger in order to signal that the migrations are com-
plete. The Multitrigger connects back to the AntonyVoice transforms through the FanOut to
restart the migration algorithms.

puts are connected to AddByIFFT transforms to synthesize waveform representations using

TDAS, as illustrated in figure 6.7. The Gain transforms allow the performer to control the

loudness of each waveform. The waveforms are mixed and sent to the audio output device.

The three instances of AntonyVoice are linked together via the Multitrigger transform to

synchronize the transition between epochs. When each algorithm completes its migration,

it outputs an event to the Multitrigger. When the Multitrigger has received this event from

all three AntonyVoice transforms, it sends a signal back to the transforms to begin the next

100

Figure 6.8: CPU usage in Antony. The average CPU time actually increases when the
general reduction strategy is applied.

epoch and restart the migration process. The frequency-bound and rate parameters were

updated remotely from a MIDI slider box (the MIDI input to each AntonyVoice transform

is not shown in figure 6.7 to avoid unnecessary clutter). The Gain transforms are also

controlled remotely via MIDI.

Antony is performed by changing the frequency bounds and migration rate in each

voice in real time using the MIDI slider box. Several performances were created, with

the MIDI events recorded to a sequencer during the performance so the same performance

could be played back multiple times under different computational conditions. One of the

performances was selected for the computational analyses and listener evaluations.

As illustrated in figure 6.8 the CPU usage actually increased when the generic re-

101

duction strategy used in the previous examples was applied. Because there is little variation

in amplitude among partials, particularly if the bandwidth is less than 1kHz, approximately

three quarters of partials are required to maintain three quarters of the total amplitude in

the model. The computation saved by pruning only one quarter of the partials was not

enough to offset the cost of the reduction algorithm.

Except for large anomalies at the beginning and end of the streams, the CPU

times were more stable in this example than in the previous examples. The startup anomaly

observed in both streams prior to 1.7 seconds is caused by artificial death and birth events

in the model generated by the AntonyVoice transform. All partials above 100 had an initial

amplitude of zero. They are interpreted by the synthesis transform as dead partials and not

synthesized. As their frequencies and amplitudes were reset by the migration algorithm,

the non-zero amplitudes were interpreted as rebirths. The gradual addition of these partials

increased computation in the synthesis transforms until all partials had non-zero amplitudes.

The sudden increase in computation after 42 seconds is due to an attempt by the sequencer

to read beyond the end of recorded performance sequence, which ends at 42 seconds. Neither

anomaly had a significant effect on the average or median CPU time over the duration of

the piece. Both anomalies have since been corrected in the implementation.

A custom strategy is required to reduce computation in this example. However,

because the models are generated algorithmically, there is additional knowledge available.

In particular, it is known that large number of partials are randomly distributed in a

fixed frequency range, and the models have a high spectral density. Human perception

of such models was studied by Hartmann et al. [56]. They found that the spectrum

became saturated after about 60 partials were added, and listeners could not discriminate

between sound examples that contained more partials. They also found that the ability to

discriminate between sounds with different numbers of partials increased as a function of

bandwidth. Fewer partials are necessary when the bandwidth becomes small. Using these

results, a custom reduction strategy was developed in which the number of partials in the

102

Figure 6.9: A reducible OSW patch for Antony. AntonyVoice has been replaced with
ReducibleAntonyVoice, which integrates a custom reduction strategy into the migration
algorithm.

model, N , is a function of bandwidth:

N = 60 + 4log2
2(
fhi − flo

50
) (6.1)

Using this formula, 60 is the minimum number of partials allowed for a model and the

size increases in proportion to the square of the logarithm of the bandwidth. The squared-

logarithm function was used to fit the model used by Hartmann et al., and the scaling factor

of four was determined by informal listener evaluation. A complication of dynamically

changing N is the change in loudness when partials are added or removed. This problem is

103

Figure 6.10: CPU usage in Antony, when the custom reduction strategy is applied. The
average CPU time decreases by approximately 20% and 50% in the partially and fully
reduced streams, respectively.

reduced by normalizing the amplitudes. The amplitude of each partial is scaled by N200/N

where N200 is the original number of partials and N is the reduced number of partials.

Figure 6.9 illustrates a reducible version of the patch used in Antony. The AntonyVoice

transforms have been replaced with ReducibleAntonyVoice. When the perceptual scheduler

determines that a reduction in computation is necessary, ReducibleAntonyVoice dynamically

adjusts the size of the model used in the migration algorithm using equation 6.1 and the

most recent upper and lower frequency bounds. As illustrated in figure 6.10, the average

CPU time drops by approximately 25% and 50% for the partially reduced and maximally

reduced streams, respectively. The startup anomaly before 1.7 seconds is still present.

104

Figure 6.11: Quality versus average CPU time in Antony. Listeners gave similar scores to
both reduced-computation performances.

However, it is less pronounced in the reduced streams because the model sizes are reduced

and fewer partials are reborn after the anomaly. The increase in CPU usage by the se-

quencer at the end of the piece is apparent in all three streams. Because the sequencer is

not a reducible transform, the increase is approximately the same in all cases. However, in

the partially reduced stream, the increase reached the upper bound on CPU time of 13µs

per sample at 43.9 seconds. The perceptual scheduler notified the reducible transforms to

reduce computation below the upper bound, resulting the observed decrease in CPU time.

The results of the listener evaluations are illustrated in figure 6.11. Both the

fully reduced and partially reduced samples, with average CPU times of 11.3µs/sample and

7.3µs/sample, respectively, received similar average scores, suggesting that listeners noticed

105

some degradation when reductions were applied but increasing the level of reduction did

not introduce additional strong artifacts. Listeners reported that a bell-like tone emerged

very gradually from a noise band (i.e., as the bandwidth increased) in the original sample

during the period between 16 and 19 seconds. However, in both of the reduced versions

the bell-like tone entered more abruptly. During this period, the bandwidth of the voice

increased quickly, so the size of the reduced model had to increase rapidly as well. The new

partials are randomly assigned frequencies in the current band (i.e., as if the frequency had

been updated by the migration algorithm). The amplitudes of the new partials are scaled

using the ampscale function. This processes prevents artifacts from the normalization,

which were more noticeable in early testing of the reduction algorithm. However, if the

bandwidth increases too quickly between epochs, a large number of new partials will be

initialized by this process and the migration of partials to the new frequency band will be

perceived to occur more quickly.

Most listeners considered this a just-noticeable difference and gave both reduced-

computation samples a score of four or more. However, three users deemed this a serious

artifact and gave the samples a score of two, which lowered the mean scores of the partially

reduced and fully reduced samples slightly below 4 to 3.85 and 3.77, respectively. Although

these lower scores are considered statistical outliers (i.e., where outliers are defined as any

elements whose distance above the third quartile or below the first quartile is more than 1.5

times the inter-quartile range), they are nonetheless reported in the results. We conclude

that the custom strategy is successful in maintaining quality under reduced-computational

conditions, with the caveat that normalization must be carefully balanced against the in-

tended rate of timbral change in the migration algorithm.

106

Figure 6.12: Chords from Constellation used to play marimba models.

6.5 Example 4: Excerpts from Constellation, Ronald Bruce

Smith

Constellation for orchestra and live electronics was composed by Ronald Bruce

Smith and premiered by the Berkeley Symphony Orchestra in November of 2000 [114].

Smith was assisted by Timothy Madden, a visiting programmer at CNMAT, who created

several Max/MSP patches for the performance [75]. In the piece, the orchestra is joined by

a live electronics performer who uses a MIDI keyboard to control several real-time synthesis

patches. Among the techniques used for the real-time synthesis was resonance modeling.

The two examples in this dissertation that studied the use of multiple resonance

models in perceptual scheduling were based on musical material and synthesis processes

developed for the premier of Constellation. The following subsections describe each of the

examples and evaluate the effect of reductions on both computation and perceived audio

quality.

107

6.5.1 Chords on a modified marimba model

In the first example, the keyboardist plays several large chords, as illustrated

in figure 6.12, that are synthesized using six concurrent resonance models. The models

are based on a marimba model that were was scaled using a brightness-model developed

by Madden, to produce a more inharmonic sound. By playing six versions of the model

simultaneously on different pitches, a single, harmonically-rich timbre is produced. The

chords are perceived not as collections of pitches, but as spectral variations in the combined

timbre.

Each of the six voices is implemented using a subpatch that contains an instance of

the modified marimba model, as illustrated in figure 6.13. When a new MIDI note is received

via the pitch inlet, it is converted to a frequency representation that is used to scale the

model to the requested pitch. The JitterRes transform is used to randomly scale the initial

amplitudes of the partials in the model between 70% and 130% of the original. (JitterRes is a

port to OSW of Madden’s jerkres object for Max/MSP.) The random scaling of each partial

adds a sense of realism to the synthesized sound, because real instruments resonate with

slightly different characteristics on successive excitations. The ReduceResonances transform

applies the reduction algorithm to the scaled and amplitude-jittered model when instructed

to do so by the scheduler. The reduced model is then sent to the Resonators transform to be

synthesized using a resonant filterbank. Each incoming MIDI note also triggers an impulse

that excites the resonant filterbank, resulting in a synthesized waveform of the model at

the requested pitch. The waveform output from each of the six subpatches was mixed into

a single waveform representing the entire chord.

The CPU usage of full-computation and two reduced-computation performances of

the chords is illustrated in figure 6.14. Unlike the the sinusoidal-model examples, in which

the number of partials changes, the number of resonance partials remains constant, so there

is little change in CPU usage during the performances. The full-computation stream has

an average CPU time of 19.3µs per sample and the fully reduced stream has an average

108

Figure 6.13: Subpatch used for synthesis of the modified marimba resonance model. Each
MIDI note received via the pitch inlet simultaneously scales the model used by the resonant
filterbank and triggers an impulse excitation. Six instances of the subpatch were used in
parallel.

CPU time 6.7 µs per sample, so the average computation saved is approximately 12.6µs per

sample, or 65%. The small spikes present in both streams at 0.40s, 0.65, 2.90s, 3.85s and

4.95 seconds correspond to the onset of each chord, which requires additional computation

to change the parameters in the filterbank. The partially reduced performance, which

was required to maintain computation at a level below two thirds of the full version (i.e.,

approximately 12µs per sample), had different average CPU times before and after the

109

Figure 6.14: CPU usage for full and reduced versions of marimba-model chords in
Constellation.

large spike at 2.9 seconds. At 2.9 seconds, the filterbanks received modified parameters

for the new chord. Because the CPU time remained consistently below the upper bound,

the ReduceResonances transforms were allowed to gradually grow the size of the resonance

models, as described in section 5.2. By the chord onset at 2.9 seconds, the size of the

reduced resonance models allowed by the scheduler had grown significantly since the last

chord onset. This increase caused the ReduceResonances transforms to pass larger models to

the filterbanks, which led to the observed spike in CPU time. The scheduler detected this

increase and chose a new reducible subset for generating reduced-size models on the next

epoch. Although the second subset resulted in less savings, it still satisfied the constraint

that computation be reduced below 12µs (i.e., two thirds of the original).

110

Figure 6.15: Quality versus average CPU time for the marimba-model chords in
Constellation.

The results of the listener evaluations are illustrated in figure 6.15. The average

CPU times of full-computation, partially reduced and fully reduced performances were

19.2µs/sample 10.6µs/sample and 6.7µs/sample, respectively. Most users perceived little

degradation in the partially reduced performance. However, listeners were split on their

perception of the fully reduced performance. Some listeners noticed little degradation in

this version, while others noticed a decrease in the duration of the sustain of the tones

because some partials with low amplitudes but long sustains were removed. Additionally,

because the chords were perceived as single inharmonic tones, some listeners noticed a

change in perceived pitch between the different samples. As described in the results for

the tam-tam resonance model section 4.2.2, the pitches of such inharmonic tones are often

111

weak or ambiguous, and resolved differently if partials are removed from the spectrum

[117]. Because this example showed little degradation in perceived quality when the CPU

usage was reduced to almost half the original, we consider this level of reduction successful.

However, it is recommended that more partials be retained in the reduced models by raising

the contribution fraction in the reduction algorithm as described in section 4.3.

6.5.2 Glockenspiel and vibraphone models

In the second example based on Constellation, the keyboardist performs two mono-

phonic lines, one with each hand. The right hand controls a glockenspiel model and the left

hand controls a vibraphone model. Unlike the previous example, in which six instances of

the same model were played as chords, two different models are used and the notes for the

two models usually occur at different times. Similar to the previous example, notes from a

MIDI sequence were routed according to MIDI channel to two subpatches that synthesized

the notes using pitch-scaled versions of the glockenspiel and vibraphone models.

The CPU usage of full and two reduced-computation performances is illustrated in

figure 6.16. The glockenspiel and vibraphone models contained 103 partials and 170 partials,

respectively. Because the combined size of the two models in this example was almost as

large as the six instances of the marimba used in the previous example (i.e., six times 48

partials, or 288 total), the CPU time required without reductions was almost as large.

However, the fully reduced version required only one quarter the CPU time of the original

version, which is a greater savings than observed for the previous example, and the greatest

computational savings observed for any of the examples. The resonance-model reduction

algorithm was able to reduce the sizes of the glockenspiel and vibraphone models to 14 and

3 partials, respectively, or 17 partials total. Although this number is slightly larger than

the 12 partials used in the previous example when fully reduced, there was less overhead

in this example because there were fewer synthesis and frequency- and amplitude-scaling

operations, and also fewer reducible transforms for the perceptual scheduling algorithm

112

Figure 6.16: CPU usage for full and reduced synthesis of vibraphone and glockenspiel
models.

to search. The partially reduced performance begins with maximum reductions on both

models, but the CPU time increases on each note onset until it reaches the upper bound of

approximately 7µs per sample. At 2.1 seconds, the CPU time exceeded the upper bound so

the scheduler temporarily reduced the model sizes before allowing them to gradually grow

again.

As illustrated in figure 6.17, listeners reported little or no decrease as quality as the

average CPU time was partially reduced from 15.6µs/sample to 6.9µs/sample and then fully

reduced to 4.2µs/sample. Because most of the energy in the two models was concentrated

in only a few partials (i.e., similar to the marimba model in chapter 4 but unlike the

modified marimba model in the previous section), most partials could be removed without

113

Figure 6.17: Quality versus average CPU time for performance of glockenspiel and vi-
braphone models in Constellation. This example received the highest listener scores as a
function of reduced CPU time.

significant degradation. Additionally, because these models were more harmonic than the

marimba model, the perceived pitch remained stable when partials were pruned. Because

more computation was saved and less quality was lost than in any of the previous examples,

this example was considered the most successful.

6.6 Discussion

Perceptual scheduling maintains strong upper bounds on execution times and real-

time QoS guarantees in larger musical examples with changing computational requirements.

Perceived audio quality depends on finding the right reduction strategies for the models be-

114

ing used. The generic sinusoidal-model reduction strategy developed in section 4.3 works

well on single-tone models but causes more severe degradation in models containing multiple

events or broader spectra. Solutions to this problem include parameterizing the reduction

algorithm and developing additional reduction algorithms for different classes of models.

However, these solutions require more expertise from composers and musical applications

developers, or the development of machine-learning techniques that select the correct re-

duction strategies for different models.

Customized strategies are a viable option for algorithmically generated models

where the mathematical and perceptual properties of the model are known in advance.

A strategy for a sinusoidal model that was specific to a single musical work was used

successfully to increase the computational savings and decrease degradation in quality.

Greater success at minimizing degradation in quality was observed for resonance

models. Like algorithmically generated models, resonance models can be seen as special

cases of sinusoidal models whose properties are known in advance. In particular, reso-

nance models have a constant size (i.e., no birth or death events), fixed frequencies and

exponentially-decaying amplitudes. These properties remain invariant under time-scaling

operations like those used in section 6.3. The resonance-model reduction strategy can there-

fore prune partials using knowledge about the entire duration of the model as determined by

the initial amplitude and decay rate. Although users can change the properties of resonance

models in real time, they usually do so at a rate much less than the approximately 100Hz

to 250Hz frame rate in analyzed sinusoidal models.

115

Chapter 7

Conclusions and Future Work

This chapter summarizes the work described in this dissertation. Section 7.1 re-

views the motivations behind the development of perceptual scheduling. Section 7.2 de-

scribes the research contributions made by this thesis work. Section 7.3 proposes areas of

future research, and section 7.4 summarizes the dissertation.

7.1 Review of Motivations and Design

Musicians who work with computers are increasingly turning from hardware to-

wards software implementations on general purpose computers. Sound synthesis appli-

cations in software provide musicians richer and more complex control of sound in their

performances and compositions. However, high computational requirements and the lack of

QoS guarantees on general-purpose operating systems has frustrated many potential users

of these applications. We introduced perceptual scheduling to meet this need.

In the perceptual scheduling framework, QoS guarantees are maintained by dynam-

ically detecting potential failures and reducing computation in sound synthesis algorithms.

A search problem is used to find a set of reducible synthesis algorithms whose combined

computation savings lowers the CPU time below the upper bound for maintaining QoS

guarantees (e.g., CPU time must be less than 20µs per sample to synthesize 44.1kHz audio

116

samples in real time). The system adapts to changing computational constraints caused

by model changes, exceptions and increased CPU use by other processes. The perceptual

scheduler dynamically increases computation in reducible algorithms when additional band-

width becomes available, and decreases computation when the bandwidth becomes scarce.

Perceptually scheduled synthesis algorithms use measures of perceptual salience

to judiciously reduce computational complexity while maintaining audio quality. This ap-

proach mirrors the use of perceptual encoders to maintain audio quality under reduced

data bandwidth. Reduction strategies were developed for additive-synthesis and resonance-

modeling algorithms based on the results of listener evaluations of models reduced using

different measures of perceptual salience. Additive synthesis and resonance modeling were

used because a clear relationship could be established between reduced model size, compu-

tational savings and degradation in audio quality.

7.2 Research Contributions

This section reviews the principal research contributions made by this thesis work.

The major contributions include:

1. A new language for developing real-time music and audio applications was introduced.

The Open Sound World (OSW) real-time music programming environment was developed

by the author to meet the needs of both performing musicans and computer-music re-

searchers. OSW is a “visual dataflow programming language” in which users connect

components called transforms into dataflow networks called patches. It includes a large

set of standard transforms for basic event and signal processing, including transforms that

manipulate sinusoidal-model and resonance-model representations. Applications can be de-

veloped incrementally by dynamically modifying patches even while they are running. In

addition, the dynamic profiling and open architecture of the run-time system made OSW

an ideal platform for the development and evaluation of perceptual scheduling. We intend

117

to release OSW for both musical and research use. More information can be obtained at

http://www.cnmat.berkeley.edu/OSW.

2. Perceptual scheduling was introduced as a novel approach to maintaining QoS guaran-

tees in real-time music and audio applications. A perceptual scheduling framework

dynamically detects failures and reduces computation.

A perceptual scheduling framework was described as a general search problem in which a set

of potential computational reductions is selected to lower CPU time below an upper bound.

Best-fit and first-fit options are discussed, and the first-fit option is chosen to minimize

the framework overhead. Different computation-reduction strategies for different synthesis

algorithms and sound models can be used within this framework. The framework and an

extensible set of reduction strategies was implemented in OSW.

3. Model-reduction strategies were developed for sinusoidal and resonance models using

the results of listening experiments.

Strategies were developed for pruning partials from sinusoidal and resonance models based

on measures of perceptual salience. Measures based on amplitude and masking effects

were compared in separate controlled listening experiments for sinusoidal and resonance

models. The results of both experiments indicated that there was little perceptual difference

between reductions based on amplitude and masking effects. Because the strategies based

on amplitude were more efficient, they were used to develop reduction algorithms to be used

within the perceptual scheduling framework.

4. The computational bandwidth saved by the perceptual scheduling framework and model-

reduction strategies was measured. The CPU savings ranged from 33% to 75%.

The CPU time used by additive synthesis and resonance modeling algorithms implemented

in OSW was measured on a reference Intel Pentium II processor. CPU times measured with

118

and without perceptual scheduling enabled were compared for several additive synthesis

and resonance models. The results indicated that significant computation was saved using

perceptual scheduling. Computational savings was also measured for musical examples in

which multiple models were synthesized simultaneously. The average CPU time saved while

maintaining high audio quality (i.e., as reported by listener evaluations) ranged from 33%

in an example with five simultaneous harpsichord sinusoidal models to 75% in an example

using simultaneous glockenspiel and vibraphone models.

5. The perceived quality of short perceptually scheduled musical examples was measured

in a controlled listening experiment.

Listeners were asked to compare the audio quality of five musical examples synthesized

with and without perceptual scheduling enabled. Additionally, four of the examples were

synthesized with the upper bound on execution time at two different levels. Overall, the

results were encouraging, especially for the resonance-model examples which most listeners

rated as good when the computation was reduced by as much as two thirds or three quar-

ters. While quality was maintained in an example using single-tone sinusoidal models, an

example using longer vocal phrases was significantly degraded when perceptual scheduling

was enabled. The conclusion from this example was that additional sinusoidal-model re-

duction strategies should be developed for different classes of models, such as human voice.

A custom reduction strategy developed for algorithmically generated models in the piece

Antony also maintained quality under reduced computational bandwidth.

The overall lesson learned from developing the perceptual scheduling framework is

that QoS failures can be averted dynamically and gracefully by targeted reductions in the

computation used by synthesis algorithms. However, care must be taken when applying the

reduction strategies to different classes of models. In general, the most computation can be

saved without compromising quality when additional knowledge about the sound models

is available. Such models include those that are algorithmically generated. Resonance

models, which are a subset of sinusoidal models with predictable exponential decay and

119

fixed frequencies, can also be viewed as a special case where additional knowledge enhanced

the development of a good reduction strategy.

7.3 Future Research Directions

This section describes possible future research directions based on the observed

successes and shortcomings of the perceptual scheduling framework.

As observed in section 6.3 and discussed in the previous section, further research is

required to develop additional reduction strategies for different classes of sinusoidal models.

In particular, sinusoidal models of speech have been studied by others for use in compression

systems because the spectral bandwidth of speech signals is narrower than general music

signals and the rate of temporal and spectral change is limited [8]. Such an approach can

be used to improve the quality of perceptual scheduling in examples like the Tibetan-song

model described in section 6.3.

However, providing several reduction strategies requires users to choose among

them explicitly or tweak parameters of a more general algorithm for a particular class of

models. Such user expertise violates one of the main goals in this research of providing mu-

sicians an automatic system for dynamic reduction of computational bandwidth. A possible

avenue of research involves the use of a machine-learning technique, such as neural networks

[81] or graphical models [62], to automatically select an appropriate reduction strategy for

a given sinusoidal model.

The algorithms and experiments described in the dissertation were designed to

evaluate computational reductions that maintained high audio quality (i.e., little percept-

ible difference from the original). If the audio-quality requirements are relaxed, additional

computational bandwidth can be saved using more aggressive reduction strategies. The

development of such strategies and their evaluation in applications requiring less audio

quality is another opportunity for future research.

Although the research described in this dissertation only applied perceptual schedul-

120

ing to the synthesis of sinusoidal and resonance models, it can be applied to other algorithms

as well. A separate reduction strategy can be developed and evaluated for resonance models

with complex non-impulse excitations. Such a strategy might require changes to the exci-

tation signal in addition to pruning of resonance partials. Granular synthesis, which is

also based on small divisions that have incremental effects on sound quality, can be made

reducible under perceptual scheduling. A similar approach using listening experiments to

develop a reduction algorithm is recommended. Perceptual scheduling can also be applied

to pitch detection, in which accuracy of the estimated pitch can be traded for reduced com-

putational bandwidth in some applications (e.g., if all detected pitches are quantized to the

traditional Western twelve-tone resolution), and video processing, in which image quality

is traded for computational complexity.

7.4 Summary

This dissertation described the design, implementation and measurement of the

perceptual scheduling framework for real-time music and audio applications. Perceptual

scheduling was motivated by the need to reduce computation in applications that are too

computationally expensive and systems where reliable real-time performance cannot be

guaranteed when all available computational bandwidth is being used. Additive synthesis

and resonance modeling were selected as the target applications for this research because

the relationship between model size, computational complexity and perceived quality can be

quantified. Perceptual scheduling was implemented in the OSW real-time music language.

Computational performance was measured for additive-synthesis and resonance-modeling

algorithms in OSW with and without perceptual scheduling enabled. Comparisons of these

performance measurements indicated that the perceptual scheduling framework successfully

bounded CPU times in these applications. The perceived quality of the short musical

examples synthesized with and without perceptual scheduling was compared by listeners in

controlled experiments. Degradation in quality was measured as a function of CPU time

121

saved. The results of these experiments indicate that perceptual scheduling combined with

suitable reduction strategies can save computation and avoid potential real-time QoS failures

while maintaining audio quality. Future research will develop additional reduction strategies

for different classes of sinsusoidal models. Other researchers are encouraged to extend the

use of perceptual scheduling to other computer-music applications such as granular synthesis

and pitch detection, as well as other perceptually motivated applications such as video

processing.

122

Bibliography

[1] ISO 226: Acoustics - Normal Equal-loudness Contours, 1987.

[2] ITU-T P.800: Methods for Subjective Determination of Transmission Quality, 1993.

[3] Inquiry Board Traces Ariane 5 Failure to Overflow Error, 1996. Society for Industrial

and Applied Mathematics http://www.siam.org/siamnews/general/ariane.htm.

[4] The Complete MIDI 1.0 Detailed Specification. Protocol specification, MIDI Manu-

facturers Association, 1996.

[5] The Relationship of Dynamic Range to Data Word Size in Digi-

tal Audio Processing. Technical report, Analog Devices, Inc., 1998.

http://www.analog.com/publications/whitepapers/products/32bit wa.html.

[6] Honda Insight Engineering, 2001.

http://www.honda2001.com/models/insight/engineering.html.

[7] AES. AES Recommended Practice for Digital Audio Engineering - Serial Trans-

mission Format for Linearly Represented Digital Audio Data. Journal of the Audio

Engineering Society, 33(12):975–84, 1985. English.

[8] S. Ahmadi and A. S. Spanias. New techniques for sinusoidal coding of speech at 2400

bps. In A. Singh, editor, Conference Record of The Thirtieth Asilomar Conference

on Signals, Systems and Computers, volume 1, pages 770–4, Pacific Grove, CA, USA,

1996. IEEE Comput. Soc. Press.

123

[9] J. Allen. Computer Architecture for Digital Signal Processing. Proceedings of the

IEEE, 73(5):852–73, 1985. Article.

[10] D. P. Anderson and R. Kuivila. Acurately Timed Generation of Discrete Musical

Events. Computer Music Journal, 10(3):48–56, 1986.

[11] R. Avizienis, A. Freed, T. Suzuki, and D. Wessel. Scalable Connectivity Processor for

Computer Music Performance Systems. In International Computer Music Conference,

Berlin, Germany, 2000.

[12] J. S. Bach. Prelude and Fugue No. 22 in Bb minor. In Well-Tempered Clavier, Book

I. 1722. Urtext edition, G. Henle Verlag, Munich Germany, 1978.

[13] J. W. Beauchamp. Unix Workstation Software for Analysis, Graphics, Modification,

and Synthesis of Musical Sounds. In Audio Engineering Society Convention, Berlin,

Germany, 1993.

[14] E. Brandt and R. Dannenberg. Low-Latency Music Software Using Off-the-Shelf

Operating Systems. In International Computer Music Conference, pages 137–140,

Ann Arbor, MI, 1998.

[15] E. Brandt and R. B. Dannenberg. Time in Distributed Real-Time Systems. In Inter-

national Computer Music Conference, Beijing, China, 1999.

[16] J. Brown. Give It Up or Turnit A Loose, 1970. On James Brown Funk Power, 1970:

A Brand New Thang, Polygram Records, Inc., 1996.

[17] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz. Move-To-Rear List Scheduling:

A New Scheduling Algorithm for Providing QoS Guarantees. In ACM Multimedia 97,

Seattle, WA, 1997.

[18] R. Caussé, P. Dérogis, and O. Warusfel. Radiation of Musical Instruments and Im-

provement of the Sound Diffusion Techniques for Synthesized, Recorded or Amplified

124

Sounds (Revisited). In International Computer Music Conference, Banff, Canada,

1995.

[19] A. Chaudhary. Band-limited Simulation of Analog Synthesizer Modules by Additive

Synthesis. In 105th AES Convention, San Francisco, CA, 1998.

[20] A. Chaudhary. OpenSoundEdit: An Interactive Visualization and Edit-

ing Framework for Timbral Resources. Masters thesis, Electrical Engineer-

ing and Computer Science, University of California, Berkeley, CA, 1998.

http://www.cnmat.berkeley.edu/ amar/MSThesis.

[21] A. Chaudhary, A. Freed, S. Khoury, and D. Wessel. A 3D Graphical User Interface

for Resonance Modeling. In International Computer Music Conference, Ann Arbor,

Michigan, 1998.

[22] A. Chaudhary, A. Freed, and D. Wessel. Exploiting Parallelism in Real-Time Mu-

sic and Audio Applications. In International Symposium on Computing in Object-

Oriented Parallel Environments, San Francisco, CA, 1999.

[23] A. Chaudhary, A. Freed, and M. Wright. An Open Architecture for Real-

time Audio Processing Software. In 107th AES Convention, New York, 1999.

http://www.cnmat.berkeley.edu/OSW.

[24] Chowning. Stria, 1977.

[25] J. M. Chowning. The synthesis of complex audio spectra by means of frequency

modulation. In Curtis Roads and John Strawn, editors, Foundations of Computer

Music, pages 6–29. MIT Press, Cambridge, MA, 1985.

[26] E. Clarke. Rhythm and Timing in Music. In Diana Deutsch, editor, The Psychology

of Music, pages 473–500. Academic Press, San Diego, 1999.

125

[27] E. F. Clarke. The Perception of Expressive Timing in Music. Psychological Research,

51:2–9, 1989.

[28] D. J. Collinge. MOXIE: A Language for Computer Music Performance. In Interna-

tional Computer Music Conference, pages 217–220, 1984.

[29] P. Cook. Synthesis Toolkit in C++. In SIGGRAPH, New York, NY, 1996. ACM.

[30] P. R. Cook. Physically Inspired Sonic Modeling (PhISM): Synthesis of Percussive

Sounds. Computer Music Journal, 21:38–49, 1997.

[31] M. S. Corrington. Variation of Bandwidth with Modulation Index in Frequency Mod-

ulation. In Klapper, editor, Papers on Frequency Modulation. Dover, 1970.

[32] R. Dannenberg. Real-Time Scheduling and Computer Accompaniment. In Max

Matthews and John Pierce, editors, Current Research in Computer Music. MIT Press,

Cambridge, MA, 1989.

[33] R. Dannenberg and E. Brandt. A Flexible Real-Time Software Synthesis System. In

International Computer Music Conference, Hong Kong, 1996.

[34] R. B. Dannenberg. Machine tongues XIX: Nyquist, a language for composition and

sound synthesis. CMJ, 21(3):50–60, 1997.

[35] R. H. Davis. Synthesis of steady-state signal components by an all-digital system.

Doctoral dissertation, Maryland, 1974.

[36] F. Déchelle et al. jMax: A New JAVA-Based Editing and Control System for Real-

time Musical applications. In International Computer Music Conference, Ann Arbor,

MI, 1998.

[37] G. DiGiugno. A 256 Digital Oscillator Bank. In Computer Music Conference, Cam-

bridge, Massachusetts: M.I.T., 1976.

126

[38] M. Dolson. The Phase Vocoder: A Tutorial. Computer Music Journal, 10(4):14–17,

1986.

[39] R. Dudas. NVM: A Modular Real-time Physical Modelling Synthesis System for MSP.

In ICMC, Ann Arbor, MI, 1998.

[40] D. Durham and R. Yavatkar. Inside the Internet’s Resource reSerVation Protocol.

Wiley Computer Publishing, New York, 1999.

[41] K. Fitz, 2001. Personal Communication.

[42] K. Fitz, L. Haken, and P. Christensen. Transient Preservation under Transformation

in an Additive Sound Model. In International Computer Music Conference, Berlin,

Germany, 2000.

[43] A. Freed. Codevelopment of User Interface, Control and Digital Signal Processing

with the HTM Environment. In 5th International Conference on Signal Processing

Applications and Technology, pages 1179–83 vol.2, Dallas, TX, USA, 1994. DSP As-

sociates. 18-21 Oct. 1994.

[44] A. Freed. Real-Time Inverse Transform Additive Synthesis for Additive and Pitch

Synchronous Noise and Sound Spatialization. In AES 104th Convention, San Fran-

cisco, CA, 1998. AES.

[45] A. Freed. Musical Applications of Resonance Models, 1999.

http://cnmat.cnmat.berkeley.edu/Research/Resonances/.

[46] A. Freed and A. Chaudhary. Music Programming with the new Features of Standard

C++. In International Computer Music Conference, pages 244–247, Ann Arbor, MI,

1998. http://www.cnmat.berkeley.edu/Research.

[47] A. Freed, X. Rodet, and P. Depalle. Synthesis and control of hundreds of sinusoidal

partials on a desktop computer without custom hardware. In Fourth International

127

Conference on Signal Processing Applications and Technology ICSPAT ’93, pages

1024–30 vol.2, Santa Clara, CA, USA, 1993. DSP Associates. 28 Sept.-1 Oct. 1993.

[48] A. Freed and D. Wessel. Communication of Musical Gesture using the AES/EBU

Digital Audio Standard. In International Computer Music Conference, Ann Arbor,

Michigan, 1998.

[49] A. Freed and M. Wright. CAST: CNMAT’s Additive Synthesis Tools. Technical

report, CNMAT, 1998. http://www.cnmat.berkeley.edu/CAST.

[50] D. Gabor. Acoustical quanta and the theory of hearing. Nature, 159:591–594, 1947.

[51] G. Garcia and J. Pampin. Data Compression of Sinusoidal Modeling Parameters

Based on Psychoacoustic Masking. In International Computer Music Conference,

Beijing, 1999.

[52] P. Goyal, H. M. Vin, and H. Cheng. Start-time Fair Queueing: A Scheduling Algo-

rithm for Integrated Sevices Packet Switching Networks. In SIGCOMM, 1996.

[53] L. Haken. Computational Methods for Real-time Fourier Synthesis. IEEE Transac-

tions on Signal Processing, 40(9):2327–2329, 1992.

[54] L. Haken, 2001. Personal Communication.

[55] L. Haken, K. Fitz, and P. Christensen. Beyond Traditional Sampling Synthesis: Real-

time Timbre Morphing using Additive Synthesis. In James W. Beauchamp, editor,

Sound of Music: Analysis, Synthesis and Perception. Springer-Verlag, 2000.

[56] W. M. Hartmann, S. McAdams, A. Gerzso, and P. Boulez. Discrimination of Spectral

Density. Journal of the Acoustical Society of America, 79(6):1915–1925, 1986.

[57] V. Iyer. Microstructures of Feel, Macrostructures of Sound: Embodied Cog-

nition in West African and African-American Musics. Doctoral disserta-

128

tion, Technology and the Arts, University of California, Berkeley, CA, 1998.

http://cnmat.cnmat.berkeley.edu/People/Vijay/%20THESIS.html.

[58] V. Iyer, J. Bilmes, D. Wessel, and M. Wright. A Novel Representation for Rhythmic

Structure. In International Computer Music Conference, pages 97–100, Thessaloniki,

Hellas, 1997.

[59] D. Jaffe. Ensemble Timing in Computer Music. Computer Music Journal, 9(4):38–48,

1985.

[60] D. H. Jameson. Building Real-Time Music Tools Visually with Sonnet. In 1996 IEEE

Real-Time Technology and Applications Symposium, Boston, MA, 1996.

[61] N. Jayant, J. Johnston, and R. Safranek. Signal compression based on models of

human perception. Proc. IEEE, 81(10):1385–1422, 1993.

[62] M. I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA,

1999.

[63] S. J. Kaplan. Developing a Commercial Digital Sound Synthesizer. In The Music

Machine. MIT Press, Cambridge, MA, 1989.

[64] K. Karplus and A. Strong. Digital Synthesis of Plucked String and Drum Timbres.

Computer Music Journal, 7(2), 1983.

[65] A. Kaup, A. Freed, S. Khoury, and D. Wessel. Volumetric Modeling of Acoustic Fields

for Musical Sound Design in a New Sound Spatialization Theatre. In International

Computer Music Conference, Beijing, China, 1999. ICMA.

[66] P. Lansky. The Architecture and Musical Logic of Cmix. In International Computer

Music Conference, pages 91–94, Glasgow, 1990.

[67] J. Laroche. The use of the matrix pencil method for the spectrum analysis of musical

signals. Journal of the Acoustical Society of America, 94(4):1958–65, 1993. Article.

129

[68] J. Laroche. Time and pitch scale modification of audio signals. In Mark Kahrs

and Karlheinz Brandenburg, editors, Applications of Signal Processing to Audio and

Acoustics, pages 279–310. Kluwer Academic, New York, 1998.

[69] J. Lazzaro and J. Wawryznek. MPEG-4 Structured Audio: Developer Tools, 2000.

http://www.cs.berkeley.edu/ lazzaro/sa.

[70] E. A. Lee et al. Heterogeneous Concurrent Modeling and Design in Java. Technical

Report UCB/ERL M98/72, EECS, University of California, November 23, 1998 1998.

http://ptolemy.eecs.berkeley.edu.

[71] E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings of the IEEE,

83(5):773–799, 1995.

[72] B. Li and K. Nahrstedt. A Control-based Middleware Framework for Quality of

Service Adaptations. IEEE Journal of Selected Areas in Communication, Special

Issue on Service Enabling Platforms, 17(9):1632–1650, 1999.

[73] R. A. Likert. A Technique for the Measurement of Attitudes. Archives of Psychology,

(140):5–55, 1932.

[74] T. Madden and J. Beauchamp. Real Time and Non-Real Time Analysis of Musical

Sounds on a Power Macintosh. Beijing, China, 1999.

[75] T. Madden, R. B. Smith, M. Wright, and D. Wessel. Preparation for Interactive

Live Computer Performance in Collaboration with a Symphony Orchestra. Technical

report, Center for New Music and Audio Technologies, University of California, 2001.

[76] M. A. Marks. Resource Allocation in an Additive Synthesis System for Audio Wave-

form Generation. In International Computer Music Conference, pages 378–382, San

Francisco, CA, 1988.

130

[77] M. V. Matthews. The Technology of Computer Music. MIT Press, Cambridge, MA,

1969.

[78] R. J. McAulay and T. F. Quatieri. Speech analysis/synthesis based on a sinusoidal

representation. IEEE ASSP, 34(4):744–754, 1986.

[79] J. McCartney. SuperCollider: A new real-time sound synthesis language. In Int.

Comp. Music Conf., pages 257–258, Hong Kong, 1996. International Computer Music

Association.

[80] K. Meyer-Patel. A Parallel Software-Only Video Effects Processing System. Doc-

toral dissertation, Computer Science, University of California, Berkeley, CA, 1999.

http://bmrc.berkeley.edu/research/publications/1999/155/index.html.

[81] W. T. Miller, R. S. Sutton, and P. J. Werbos. Neural Networks for Control. Bradford

Books. The MIT Press, Cambridge, Mass, 1990.

[82] D. Mills. Network Time Protocol (Version 3) Specification, Implementation, and

Analysis. Technical Report Internet RFC 1305, 1992.

[83] D. Mills. Simple Network Time Protocol (SNTP) Version 4 for

Ipv4, Ipv6 and OSI. Technical Report Internet RFC 2030, 1996.

http://sunsite.auc.dk/RFC/rfc2030.html.

[84] F. R. Moore. Elements of Computer Music. Prentice-Hall, Englewood Cliffs, NJ,

1990.

[85] J. A. Moorer. The use of the phase vocoder in computer music applications. Journal

of the Audio Engineering Society, 26(1-2):42–5, 1978. Article.

[86] E. Moulines and F. Charpentier. Pitch-Synchronous Waveform Processing Techniques

for Text-To-Speech Synthesis using Diphones. Speech Communication, 9:453–467,

1990.

131

[87] M. Nicholl. Good Vibrations. Invention and Technology, 1993.

[88] H. Park, S. Van Huffel, and L. Elden. Fast algorithms for exponential data modeling.

In IEEE International Conference on Acoustics, Speech and Signal Processing, pages

IV/25–8 vol.4, Adelaide, SA, Australia, 1994.

[89] N. Porcaro, P. Scandalis, J. O. Smith, D. A. Jaffe, and T. Stilson. SynthBuilder – A

Graphical Real-time Synthesis, Processing and Performance System. In International

Computer Music Conference, Banff, Canada, 1995.

[90] Y. Potard, P.-F. Baisnée, and J.-B. Barrière. Experimenting with Models of Resonance

Produced by a New Technique for the Analysis of Impulsive Sounds. In International

Computer Music Conference, pages 269–274, La Haye, 1986.

[91] J. Princen and A. Bradley. Analysis/synthesis Filter Band Design Based on Time-

domain Aliasing Cancellation. IEEE Trans. Acoustics, Speech and Signal Processing,

34:1151–1161, 1986.

[92] M. Puckette. The Patcher. In Proceeings of the 14th International Computer Music

Conference, Koln, 1988.

[93] M. Puckette. Pure Data: Another Integrated Computer Music Environment. In

Second Intercollege Computer Music Concerts, pages 37–41, Tachikawa, Japan, 1996.

[94] M. Puckette, T. Apel, and D. Zicarelli. Real-time audio analysis tools for Pd and

MSP. In International Computer Music Conference, pages 109–112, Ann Arbor, MI,

1998.

[95] R. Puri and K. Ramchandran. Multiple Description Source Coding Through Forward

Error Correction Codes. In Proceedings of the 33rd Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, 1999.

132

[96] S. R. Quackenbush, T. P. I. Barnwell, and e. al. Objective Measures of Speech Quality.

Prentice Hall, Englewood Cliffs, NJ, 1988.

[97] T. F. Quatieri and R. J. McAulay. Shape invariant time-scale and pitch modification

of speech. IEEE Transactions on Signal Processing, 40(3):497–510, 1992. Article

Access restricted.

[98] B. H. Repp. Probing the Cognitive Representation of Musical Time: Structual Con-

straints on the Perception of Timing Perturbations. Cognition, 44:241–281, 1992.

[99] B. H. Repp. Musical Motion in Perception and Performance. In David A. Reson-

baum and Charles E. Collyer, editors, Timing of Behavor: Neural, Psychological and

Computational Perspectives, pages 125–144. MIT Press, Cambridge, MA, 1998.

[100] M. Reyoto. Fugue No. 22 in Bb minor (BWV 867), 2001. Standard MIDI

File at Classical Music Archive, Pierre R. Schwob, Classical Archives, LLC.

http://www.prs.net/bach.html.

[101] M. R. Riedel. Kiss the Shattered Glass and Time, Space and the Synthesis of Illu-

sion: the Creation of Space and Sonic Mass in ’Kiss the Shattered Glass’. Doctoral

dissertation, Rutgers University, 2001.

[102] J.-C. Risset and D. Wessel. Exploration of Timbre by Analysis Synthesis. In Diana

Deutsch, editor, The Psychology of Music. Academic Press, San Diego, 1999.

[103] C. Roads. Granular Synthesis of Sound. In C urtis Roads and John Strawn, editors,

Foundations of Computer Music, pages 145–159. MIT Press, Cambridge, MA, 1988.

[104] X. Rodet. Musical sound signal analysis/synthesis: sinusoidal-plus-residual and el-

ementary waveform models. Applied Signal Processing, 4(3):131–41, 1997. Article

Springer-Verlag.

133

[105] X. Rodet, Y. Potard, and J.-B. Barrière. The CHANT Project : From Synthesis

of the Singing Voice To Synthesis in General. Computer Music Journal, 8(3):15–31,

1984.

[106] L. A. Rowe and B. C. Smith. A Continuous Media Player. In 3rd International

Workshop on Network and Operating System Support for Digital Audio and Video,

San Diego, CA, 1992.

[107] C. Scaletti. The Kyma/Platypus Computer Music Workstation. Computer Music

Journal, 15(3):41–49, 1989.

[108] E. D. Scheirer. Structured Audio, Kolmogorov Complexity, and Generalized Audio

Coding (in press). IEEE Transactions on Speech and Audio Processing, 2000.

[109] E. D. Scheirer and B. L. Vercoe. SAOL: The MPEG-4 Structured Audio Orchestra

Language. Computer Music Journal, 23(2), 1999.

[110] X. Serra and III J. Smith. Spectral modeling synthesis: a sound analysis/synthesis

system based on a deterministic plus stochastic decomposition. Computer Music

Journal, 14(4):12–24, 1990.

[111] S. Shlien. Guide to MPEG-1 Audio Standard. IEEE Trans. on Broadcasting,

40(4):206–218, 1994.

[112] J. O. Smith. Physical Modeling Using Digital Waveguides. Computer Music Journal,

16(4), 1992.

[113] J. O. Smith and P. Gossett. A Flexible Sampling-Rate Conversion Method. In IEEE

ICASSP, volume 2, pages 19.4.1–19.4.2, San Diego, CA, 1984.

[114] R. B. Smith. Constellation for orchestra and live electronics, 2000. Premiered in

November 2000 by the Berkeley Symphony Orchestra.

134

[115] J.-F. Susini, L. Hazard, and F. Boussinot. Distributed Reactive Machines. In Fifth

International Conference on Real-Time Computing Systems and Applications, pages

267–274, Hiroshima, Japan, 1998. IEEE.

[116] E. Terhardt. Psychoacoustic evaluation of musical sounds. Perception and Psy-

chophysics, 23:483–492, 1978.

[117] E. Terhardt, G. Stoll, and M. Seewann. Pitch of Complex Signals According to

Virtual-pitch Theory: Tests, Examples and Predictions. Journal of the Acoustical

Society of America, 71:671–678, 1982.

[118] D. Topper. RTcmix for Linux. 1. Linux Journal, (78):166–172, 2000.

[119] K. Tsutsui et al. ATRAC: Adaptive Transform Acoustic Coding for Mini-

Disc. In 93rd Audio Engineering Society Convention, San Francisco, CA, 1992.

http://www.minidisc.org/aes atrac.html.

[120] M. Tsuzaki and R. D. Patterson. Jitter Detection: A Brief Review and Some New

Experiments. In A. Palmer, R. Summerfield, R. Meddis, and A. Rees, editors, Pro-

ceedings of the Symposium on Hearing, Grantham, UK, 1997.

[121] B. Vercoe and D. P. W. Ellis. Real-time CSound: Software Synthesis with Sensing

and Control. In International Computer Music Conference, pages 209–211, Glasgow,

1990.

[122] B. Vercoe et al. The Csound Manual (version 3.47): A Manual for

the Audio Processing System and Supporting Programs with Tutorials, 1997.

http://mitpress.mit.edu/e-books/csound/csoundmanual/TITLE.html.

[123] S. Vernon. Design and Implementation of AC-3 Coders. IEEE Tr. Consumer Elec-

tronics, 41(3), 1995.

135

[124] H. von Helmholtz and A. J. Ellis. On the sensations of tone as a physiological basis for

the theory of music. Dover Publications, New York,, 1875. 2d English ed., translated,

thoroughly rev. and corrected, rendered conformal to the 4th (and last) German ed.

of 1877, with numerous additional notes and a new additional appendix bringing

down information to 1885, and especially adapted to the use of music students, by

Alexander J. Ellis. With a new introd. (1954) by Henry Margenau.

[125] G. H. Wakefield. A Mathematical/Psychometric Framework for Comparing the Per-

ceptual Response to Different Analysis-synthesis Techniques: Ground Rules For A

Synthesis Bake-Off. In International Computer Music Conference, Berlin, 2000.

[126] J. C. Wawrzynek, T.-M. Lin, C. A. Mead, L. H., and D. L. A VLSI Approach to

Sound Synthesis. In International Computer Music Conference, Paris, 1984.

[127] D. Wessel. Antony, 1977. On Compter Music Currents 10, Wego Schallplatten GmbH,

Mainz, Germany, 1992.

[128] D. Wessel, C. Drame, and M. Wright. Removing the Time Axis from Spectral Model

Analysis-Based Additive Synthesis: Neural Networks versus Memory-Based Machine

Learning. Ann Arbor, Michigan, 1998. ICMA.

[129] D. Wessel, M. Wright, and S. A. Khan. Preparation for Improvised Performance in

Collaboration with a Khyal Singer. In International Computer Music Conference,

Ann Arbor, Michigan, 1998.

[130] D. L. Wessel, P. Lavoie, L. Boynton, and Y. Orlarey. MIDI-Lisp: A Lisp-based

programming environment for MIDI on the Macintosh. In AES 5th International

Conference: Music and Digital Technology, volume 1, pages 185–197, Los Angeles,

1987. Audio Engineering Society, New York.

[131] M. Wright. Implementation and Performance Issues with OpenSound Control. In

International Computer Music Conference, Ann Arbor, Michigan, 1998.

136

[132] M. Wright, A. Chaudhary, A. Freed, S. Khoury, and D. Wessel. Audio Applications

of the Sound Description Interchange Format Standard. In 107th AES Convention,

New York, 1999. http://www.cnmat.berkeley.edu/SDIF.

[133] M. Wright et al. Panel Session on Analysis/Synthesis Techniques. Berlin, 2000.

[134] M. Wright, S. Khoury, R. Wang, and D. Zicarelli. Supporting the Sound Description

Interchange Format in the Max/MSP Environment. In International Computer Music

Conference, Beijing, China, 1999.

[135] M. Wright and E. Scheirer. Cross-Coding SDIF into MPEG-4 Structured Audio. In

International Computer Music Conference, Beijing, China, 1999.

[136] D. Zicarelli. An Extensible Real-Time Signal Processing Environment for Max. In

International Computer Music Conference, pages 463–466, Ann Arbor, MI, 1998.

http://www.cycling74.com.

[137] E. Zwicker and H. Fastl. Psychacoustics: Facts and Models, 2nd Edition, volume 22

of Springer Series in Information Sciences. Springer-Verlag, Berlin, 1999.

[138] E. Zwicker and T. Zwicher. Audio Engineering and Psychoacoustics: Matching Signals

to the Final Receiver, the Human Auditory System. J. Audio Eng. Soc, 39(3):115–126,

1991.

137

Appendix A

Supplementary Audio CD

The tracks on the supplementary audio CD are listed below.

Sinusoidal models (Chapter 4)

1. Suling model, original (150 partials) [0:08]

2. Suling model, 113 partials [0:08]

3. Suling model, 75 partials [0:08]

4. Suling model, 56 partials [0:08]

5. Suling model, 38 partials [0:08]

6. Suling model, 19 partials [0:08]

7. Suling model, 9 partials [0:08]

8. Suling model, 5 partials [0:08]

9. Suling model, 2 partials [0:08]

10. Berimbao model, original (200 partials) [0:04]

11. Berimbao model, 150 partials [0:04]

12. Berimbao model, 100 partials [0:04]

13. Berimbao model, 75 partials [0:04]

14. Berimbao model, 50 partials [0:04]

15. Berimbao model, 25 partials [0:04]

16. Berimbao model, 13 partials [0:04]

17. Berimbao model, 6 partials [0:04]

18. Berimbao model, 3 partials [0:04]

138

19. James Brown recording, original sample [0:06]

20. James Brown model, original (240 partials) [0:06]

21. James Brown model, 180 partials [0:06]

22. James Brown model, 120 partials [0:06]

23. James Brown model, 90 partials [0:06]

24. James Brown model, 60 partials [0:06]

25. James Brown model, 30 partials [0:06]

26. James Brown model, 15 partials [0:06]

27. James Brown model, 8 partials [0:06]

28. James Brown model, 4 partials [0:06]

Resonance models (Chapter 4)

29. Marimba model, original (48 partials) [0:02]

30. Marimba model, 37 partials [0:02]

31. Marimba model, 31 partials [0:02]

32. Marimba model, 25 partials [0:02]

33. Marimba model, 19 partials [0:02]

34. Marimba model, 13 partials [0:02]

35. Marimba model, 10 partials [0:02]

36. Marimba model, 7 partials [0:02]

37. Marimba model, 4 partials [0:02]

38. Marimba model, 2 partials [0:02]

39. Bass model, original (59 partials) [0:04]

40. Bass model, 45 partials [0:04]

41. Bass model, 37 partials [0:04]

42. Bass model, 30 partials [0:04]

43. Bass model, 23 partials [0:04]

44. Bass model, 15 partials [0:04]

45. Bass model, 12 partials [0:04]

46. Bass model, 8 partials [0:04]

47. Bass model, 4 partials [0:04]

48. Bass model, 2 partials [0:04]

49. Tam-tam model, original (183 partials) [0:08]

50. Tam-tam model, 138 partials [0:08]

51. Tam-tam model, 115 partials [0:08]

139

52. Tam-tam model, 92 partials [0:08]

53. Tam-tam model, 69 partials [0:08]

54. Tam-tam model, 46 partials [0:08]

55. Tam-tam model, 35 partials [0:08]

56. Tam-tam model, 23 partials [0:08]

57. Tam-tam model, 12 partials [0:08]

58. Tam-tam model, 6 partials [0:08]

Additional models for performance measurements (Chapter 5)

59. Steve Coleman saxophone lick (sinusoidal model) [0:02]

60. Shafqat Ali Khan sinusoidal model [0:05]

61. “Angry cat” sinusoidal model [0:06]

62. Piano A0 resonance model [0:08]

Musical Examples (Chapter 6)

63. Excerpt from Fugue in B flat minor, J.S. Bach (BWV 867) [0:34]

64. Fugue, with computational reductions [0:34]

65. Time-scale Improvisation on Recording of Tibetan Singing (Tsering Wangmo) [0:28]

66. Tibetan Singing, with partial computational reductions [0:28]

67. Tibetan Singing, with full computational reductions [0:28]

68. Antony, David Wessel [0:45]

69. Antony, with partial computational reductions [0:45]

70. Antony, with full computational reductions [0:45]

71. Marimba-like chords from Constellation, Ronald Bruce Smith [0:07]

72. Constellation marimba, with partial computational reductions [0:07]

73. Constellation marimba, with full computational reductions [0:07]

74. Glockenspiel and vibraphone from Constellation, Ronald Bruce Smith [0:21]

75. Glockenspiel and vibraphone, with partial computational reductions [0:21]

76. Glockenspiel and vibraphone, with full computational reductions [0:21]

